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1 INTRODUCTION 

With recent advancements in high-speed communication networks, global vehicle 

tracking and positioning systems, satellites and high speed computers, shipment rout

ing and vehicle dispatching decisions can be made in real-time based on information 

currently available. Shipment routing and vehicle dispatching problems for less-than-

truckload (LTL) carriers have been addressed using classical mathematical models in 

the literature. However, these models ignore the stochasticity and dynamism embedded 

in these problems. The major goal of this research is to develop models and solution 

approaches to address the dynamic load planning problem. The dynamic load plaiuiiiisi, 

problem decides where and when to dispatch the truck based on the current state of the 

system and current time. In particular, this research addresses two problems, namely 

dvnamic priority shipment routing problem, and dynamic service network design proij-

lem on a single link. The dynamic priority shipment routing problem decides where the 

consolidation needs to be done in real-time to minimize delays to priority shipments and 

thus reduce penalty costs, based on current information available. The dynamic service 

network design problem decides when to dispatch a truck in real-time to minimize the 

total cost, trading off the costs of holding freight vs. sending a truck that might not be 

full, based on current time and information available at current time. 

Several classes of research problems e.xist in LTL networks. In the literature, several 

of these problems are addressed. The hierarchy of the problems addressed in the litera

ture is shown in the Figure I.l. The following section briefly describes where dynamic 

load planning fits in the hierarchy of research problems that e.xist in LTL literature. 
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Determines how the freight should be routed through the 
network to minimize cost while maintaining service based on 
aggregated forecast and historical data. 

Load Planning 

Determines where and when to dispatch a truck based on 
detailed forecast and current state of the system (real-time 
information). 

Dynamic Load Planning 

Matches available drivers to trailers to minimize cost subject 
to work rules and that service commitment of all the 
shipments in the trailer are satisfied. 

Driver Scheduling 

Decides how to route vehicles within a city to pick up 
shipments fi-om or deliver shipments to the customers. 
Decides how to route vehicles between terminals. 

Vehicle Routing 

Decides where the terminals should be located. 
Decides which terminal(break/EOLs) to use. 
Decides what type of service to oflfer in what routes. 

Strategic Planning 

Figure 1.1 Hierarchy of LTL network research problems 
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• Strategic planning: For LTL carriers, strategic planning generally means decidinsi 

where the terminals should be located and which of the terminals selected should 

be breaks and which should be end-of-lines (EOL). Furthermore, it selects the 

type of (regular/priority) service to offer between terminals based on the number 

of shipments between the given terminals, the revenue potential, and other factors. 

• Load planning: Load planning determines how the freight should be routed througli 

the network. That is. load planning determines which consolidation terminal!si 

should be used for freight between any two given terminals. The consolidation 

terminals for origin-destination pairs are determined based on aggregated forecast 

and historical data such that the total cost is minimized while maintaining the ser

vice. While load planning decides which consolidation terminals the freight sliould 

be routed through, it takes into consideration the work rules for the driver.s. ca

pacity of the terminals to handle a certain number of trailers at any given time, 

and the balance of equipment (trailer/tractor) flow. 

• Dynamic load planning: Dynamic load planning (DLP) determines where and 

when to dispatch a truck based on the current state of the system, and deraiU'd 

forecast of the system. DLP decides where the consolidation needs to b*- done 

to minimize cost while maintaining service based on the real-time information 

available, and when the truck needs to be dispatched so as to minimize cost over 

time based on the current time and information available at the current time. 

• Driver scheduling: Driver scheduling creates routes the drivers, liased on the num

ber of trailers that needs to be dispatched and the number of drivers available 

subject to driver work rules, such that the service commitment of all the ship

ments in the trailer are satisfied. .As a result of this module, a driver is assigned 

to each of the trailers that needs to be dispatched. 
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• Vehicle routing: For LTL carriers, vehicle routing decides how to route the vehicles 

within a city to pick up shipments from or deliver shipments to the customers. 

Vehicle routing also decides how the vehicle will be routed between a given origin-

destination pair to minimize the distance traveled. 

In this chapter. LTL carrier operations are described briefly and various terms used 

in the dissertation are explained. There are two major terminal types in an LTL service 

network: end-of-line (satellite) and break (hub). .An end-of-line maintains a fleet of 

small trucks that pick up and deliver shipments in the local area. Typically, a shipment 

goes from an end-of-line terminal, passes through one or two breaks where consolidation 

takes place (unloading, sorting, and loading), and then reaches the destination. This 

research considers the LTL line-haul network comprised of the end-of-lines. the breaks, 

and the shipment routes between them. 

The majority of shipments that LTL motor carriers deal with are less than 1.000 

pounds. Thus, a tractor-trailer combination can carry an average of 20 to ."}0 shipments 

that can have different origins and destinations. .As a result, shipments need to be 

consolidated at some breaks in order to build more economical loads. .A typical shipment 

route between a pair of origin and destination terminals may consist of one or two breaks. 

To maintain a service level standard and to comply with work rules, however, companies 

limit the number of allowable shipment routes from one terminal to another terminal 

and generally use fixed routes. This fi.xed set of routes is referred to as the load pattern 

or load plan that is updated periodically (such as monthly). 

The shipment routes are given by two fixed load patterns: (I) the priniarx" load 

pattern, and (2) the direct load pattern. Given an origin-destination (OD) pair of 

terminals, the primary load pattern gives the primary break of the origin whereas the 

direct load pattern indicates which terminal to go to if the primary break is bypassed. 

For e.xample. consider the shipment moving from Boston to Los Angeles, which are both 
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encl-of-Iines in Figure 1.2. The primary break of Boston (going to Los AngeltM is AVh-

York, and the primary break of New York (going to Los Angeles) is San Francisco. Thus, 

the primary shipment route is Boston New York San Francisco —^ Los Angdis. 

If the load pattern indicates that San Francisco is a direct for the Boston-Lo.- Angehs 

pair, then shipments can bypass .Veu* }'ork and go to San Francisco directly provided 

that there is enough of such shipments. In most cases, there is one primary route and 

there is at most one direct route for any OD pair of terminals, .\otice that in practice, 

shipments may not follow routes that are in load patterns: such routes are referred to 

as opportunistic directs. However, opportunistic directs are e.xceptioiis rather than rule's 

in LTL operations. Hereafter, a trailer that is moving on a primary route is referred to 

as a primarij trailer whereas a trailer that is moving on a direct route a direct trailer. 

Generally speaking, the shipments using direct routes pass through the least number 

of breaks, but spend more time at each terminal since it usually takes longer to fill a 

direct trailer. Furthermore, if a direct trailer cannot be filled to certain level (of capacity ) 

within a given period of time, the shipments on this trailer may be unloaded and then 

reloaded in the corresponding primary trailer. 

1.1 Terms 

Some of the terms specific to LTL carriers used extensively in this dissertation are 

described as follows. 

• Breakbulk terminal: .A. breakbulk terminal is a primary sorting facility in an LTL 

network. .At breakbulk terminals, the shipments are sorted by destination and sent 

by linehaul truck either to the destination or to another breakbulk terminal. Each 

breakbulk terminal serves a set of satellite EOLs. giving rise to hub and spoke 

networks. 



www.manaraa.com

6 

PJ 

Boston 

New York 

Louis 

San Francisco 

Los Angeles 

Route pattern provided by Load Plan 

Additional route not provided by Load Plan 

P Primary 

D Direct 

• EOL 

A Break 

Figure 1.2 Primary and direct load patterns for shipments from Boston to 
Los Angeles 
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Current inventory level/shipment level: The amount of shipments ijetween a OD 

pair at current time is referred to as the current inventory level/shipment level. 

Daily dispatch service: Between certain OD pairs, a trailer is dispatched daily at 

the same time, if the minimum trailer capacity is reached. Thi.s type of dispatch 

is called the daily dispatch service. 

Direct service: .Starting from an origin (EOL or breakbulk) when there are enough 

shipments either to the destination or to the consolidation facility closest to the 

destination, the linehaul trailer is sent to the destination or to the breakbulk closest 

to the destination in order to minimize the handling cost at the nearliy breaklnilk 

facility. Such a service between a given origin terminal and tlie destination or 

consolidation facility closest to the destination is called direct service. 

End of line terminal (EOL): .A.n LTL network typically consists of a large nuniiierof 

EOL terminals located in various cities in a region for a regional carrier or located 

across the country for a large national carrier. Freight is picked u[) in a cit\- or 

from nearby locations by a fleet of pickup and delivery trucks and then carried to 

the EOL terminal where the freight is usually unloaded, sorted, and loaded into 

the linehaul trailers. 

Far break: Starting from an origin when a direct .service is used to reach a desti

nation (which is a breakbulk). this breakbulk is called a far break (FBreak). 

Far EOL: Starting from an origin when a direct service is used to reach a destina

tion (which is an EOL). this EOL is called a far EOL (FEOL). 

Holding time: The time between the opening of a trailer and the closing of a 

trailer is called holding time. .A trailer is opened when first shipment between a 

particular OD pair is loaded into it. .A trailer is closed for dispatch for several 
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different reasons. A trailer can be closed because it is filled to capacity or if one 

or more of the shipments in the trailer cannot meet its service commitment if the 

trailer is delayed any further. .A.lso. it may be closed if it has been occupying one 

of the terminal longer than planned causing congestion. 

• Intermodal: If the freight uses more than one mode of transportation, such as 

truck, rail and/or ship to reach its destination, then it is called intermodal. 

• Load plan: For all possible OD pairs, specifying the consolidation terminals for 

primary, direct, and opportunistic direct service is called load plan. 

• Loading time: The time difference between the trailer closing time and tiie actual 

loading time of a shipment in the trailer is called the loading time for the shii)nient. 

• Maximum holding time: The ma.ximum time that a trailer can i)e held at a terminal 

after it has been opened is called maximum holding time. This time is dependent 

on the type of terminal. 

• Opportunistic Direct: Starting from an origin (EOL or breakbulk) when there are-

enough shipments between a given 0-D pair, the trailer is dispatched direi ll\ tu 

the destination without going through a consolidation facility. Such a service is 

called opportunistic direct service. 

• Primary service: Starting from an origin (EOL or breakbulk) when there are not 

enough shipments to the destination, the linehaul trailer is sent to the nearest 

consolidation (breakbulk) facility in order to minimize the number of empty miles 

traveled. Such a service between a given origin terminal and the nearest consoli

dation terminal is called primary service. 

• Time to make service (TTMS): For any shipment, the time to make service (TTMS) 

is the time difference between the service commitment and the average time it takes 



www.manaraa.com

9 

to transport the shipment from the current location to its destination, hi other 

words. TTMS is the maximum amount of time a shipment can be delayed without 

affecting the service commitment at any time. 

• Transfer ratio: The average number of consolidation terminals at which a shipment 

is handled other than the origin and destination terminal is called transfer ratio. 

• Unloading time: The amount of time needed to unload a trailer is called the-

unloading time. 

• Waiting to dispatch time: The time difference between the actual dispatch time 

and trailer closing time is called the waiting to dispatch time. 

• Waiting to unload time; The time difference between the actual time of unloading 

and arrival time of the trailer is called the waiting to unload time. 

1.2 Costs 

The following costs are associated with transporting a shipment from an origin to its 

destination; 

• Pick up cost: The cost to pick up shipments from customers using pickup trucks 

and bringing them back to an EOL is called the pick up cost. 

• Delivery cost: The cost to deliver shipments to customers using delivery trucks, 

usually from an EOL is called the delivery cost. 

• Transfer handling cost: The cost incurred in handling a shipment at an interme

diate consolidation terminal is called the transfer handling cost. 

• Travel cost: The cost incurred in the actual transportation of shipments is the 

travel cost. Examples are the costs of fuel, equipment, and driver. 
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• Origin handling cost: The cost incurred in handling shipments at the origin ter

minal is called the origin handling cost. 

• Destination handling cost: The cost incurred in handling shipments at the desti

nation terminal is called the destination handling cost. 

1.3 Parameters 

The following parameters affect the cost of transporting a shipment from an origin 

to its destination: 

• Holding time 

• Type of terminal 

• Day of the week 

• Time of the day 

• Current inventory level 

• TTMS of shipment 

• .Minimum capacity of the trailer that needs to be filled for dispatch 

• Load plan 

• Daily dispatch 

• Interaction between the factors (holding time. TTMS. minimum capacity of the 

trailer that needs to be filled) 

Next, a brief overview of other chapters in this dissertation is provided. Chapter 

2 describes the literature on the dynamic priority shipment routing problem, the dy

namic stochastic shortest path problem, the dynamic service network design, vehicle 
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dispatching problems over a single link, and literature on simulation models developed 

for logistics support. In addition, the models and solution approaches developed in this 

research are compared to the ones available in the literature. 

Chapter 3 describes a decision support system developed to assist LTL managers in 

day-to-day operations, as well as for strategic and tactical analysis (for scenario evalu

ation) of new decisions and policies of the management. The model simulates the load 

(bill) movements on a trailer based on the load plan (routes), speed restrictions, trailer 

capacity, currently available load at the terminal, rail schedules, and certain minimum 

utilization of the trailers. Because the simulation model was created using an object 

oriented programming approach, the user is presented with a model in which input can 

be easily changed to implement the different load plans, service level or the logic ran 

changed to incorporate new service policies such as daily dispatches and opportunistic 

directs. The model developed is also used by LTL carriers to estimate the numl)er of 

trailers that will be closed in the ne.vt 24 or 4S hours so that LTL carriers can move the 

necessary empty trailers and drivers to those locations based on the number estimated. 

The model is also used to perform some numerical experiments to find the effects of 

direct service, opportunistic direct servire. TTMS. holding time, and mininnim capacit\" 

at which the trailer is closed on the total cost of the system and number of hills delayed. 

Chapter 4 focuses on routing priority shipments in LTL service networks. Currently. 

LTL carriers route both regular and priority shipments through their service networks 

by using some fi.xed route patterns known as load plans. In this research, an alternative 

routing strategy for priority shipments in LTL networks is considered. This strategy 

e.xploits the stochasticity and dynamism embedded in the routing process and uses the 

real-time information at terminals (such as loading status of trailers and driver avail

ability) to determine the shipment routes dynamically. This strategy is formulated as 

the problem of finding the dynamic shortest path over a network with random arc costs. 

.An efficient algorithm that can solve this optimization problem in real-time is devel
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oped. The numerical testing using real data sets suggests that the proposed strategy 

can improve the level of service for priority shipments. 

Chapter 5 describes how to optimize the dispatch of a trailer over a single link. 

E.xisting solutions to the vehicle dispatching problem are limited to simple problems 

with assumptions such as stationary demand pattern. .An approximate dynamic control 

policy for dispatching a trailer in which the demand is assumed to be dynamic is proposed 

in this research. Since the solution to the single link problem can be further e.xtended 

to solve large LTL networks, the developed approximate solution procedure should l)e 

fast. .A recourse function is developed which gives the total future cost from current 

time, given the current state of the system. The dynamic control policy exploits the 

linearity of the recourse function in solving the trailer dispatching problem efficiently. 

The algorithm is easy to implement and computationally fast. The dynamic control 

policy developed in this research is not proved to be optimal, but the numerical results 

show that it is effective. 

Chapter 6 briefly summarizes the results of this research and points out future pos

sible e.Ktensions to this research. 
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2 LITERATURE REVIEW 

Modeling of freight transportation systems results in mathematically complex proli-

lems and that the design of exact optimal algorithms for problems of this complexity 

tends to be cumbersome and slow. Moreover, no formulation can capture all interaction 

possibilities, all the written and unwritten policies and rules, or all the complexities of 

the real life transportation system. So the first part of the research develops a decision 

support system for LTL managers to investigate the possibilites of scenario ovalualion 

by using a simulation model. Kelton [34] discusses recent developments in simulation 

research and current directions as well as how research interacts with practice and soft

ware development and makes projections for future research. Some of the sinmlation 

research that attempts to do this is described in this chapter. 

Lai. Lam. and Chan [3S!l developed a simulation model of the ship]jing cuuipHuy"> 

operational activities and used the model to identify the policies that yield the lowest 

operating costs in terms of leasing, storage, pickup, and drop-off charges. .Accordiii';, 

to the authors, this study provides insights that result in substantial savings to the 

shipping company while increasing customer satisfaction. Sheikh. Paul. Harding, and 

Balmer [64] developed a microcomputer-based simulation model for planning future 

berth recjuirments at a third world port and described how this simulation model was 

helpful to the consultants. Park and Xoh [46] developed a port simulation mode! to 

simulate the future economic port capacity to meet the projected cargo demand. The 

first part of the model determines the effects caused by the port capacitv e.xpansion and 

the second part evaluates the port economics due to changes in the port capacity. Park 
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and Noh also tested the simulation model by applying it to the actual port expansion 

followed at the Port of Mobile in Alabama. 

Petersen and Taylor [47] developed a discrete event simulation model for rail and 

used it to evaluate train performance and line capabilities, different track facilities and 

dispatching procedures and rules. Since, the simulation models are usually detailed 

representations of the actual network and the operations of the rail company they are 

considered highly credible by the industry, according to Dejax and Crainic [19], Rail 

companies have traditionally used simulation models to assess the impact of operating 

policies and strategies, a review of such simulation models for the rail industry are given 

by .Assad [2]. Sharma. .Asthana. and Goel [63] described a decision support system to 

assist railroad managers in day-to-day as well as long term planning of train o[)era-

tion and studied advantages of augmentation of infrastructure by simulating tlu> train 

movements on a rail road. Randhawa. Brunner. Funck. and Zhang [60] developed 

discrete event object-oriented modeling environment for .sawmill simulation. The model 

is flexible in modeling different sawmill configurations and production scenarios, and tlic 

system represents a library of objects developed in an object-oriented framework. Se-

menzato. Lozano. and Valero [62| described a discrete event simulation model fur ^llga|• 

cane harvesting operations to minimize the quantity of discarded cane and to optimize 

the utilization of resources. 

.Although available literature suggest decision support tools and simulation models for 

the rail/shipping industry, little is known about the availability of such decision support 

tools for the LTL industry. Therefore, this research develops a decision support tool 

for LTL managers to study, analyze, and plan LTL operations so that scarce resources 

are used more effectively and efficiently. The decision support tool also illustrates the 

complicated interactions among the shipment route, closing rules, cost, and service level. 

The decision support tool can also be used by LTL managers in day-to-day operations 

as well as for long-term planning of LTL operations. For example, the decision support 
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tool can be used to estimate the number of trailers that will be closed in the next 24 

or 48 hours. This data can then be used by LTL managers to determine empty vehicle 

repositioning and driver scheduling. 

In the existing literature, simulation models are also used with an optimization model 

to optimize certain criteria. One such paper by RatclifFe, V'inod. and Sparrow who uses 

a hybrid approach of simulation and optimization to optimally preposition tlie empty 

freight cars by increasing the number of revenue trips accomplished in a given period of 

time. .A. linear transportation program is used to find the optimal car movements ba.sed 

on supply and demand. The e.xcess supply is moved to nodes that minimize the total 

expected transit time given the demand distribution, which is solved using a stochastic 

linear programming model. The two optimization programs are linked and driven by a 

simulation model, that simulates the actual operation of a rail carrier. 

Literature related to the second part of the research falls into two categories: (I I 

research on LTL networks, and (2) research on solving dynamic and stochastic shortest 

path problem (DSSP). Majority of the literature available on LTL networks determine 

the best driver routes and shipment routes (that is. the load plan) on the ba.sis of av

erage flow pattern which is briefly described iielow. Powell and Sheffi [51] and Powell 

[57] formulated the design problem as a large-scale mixed integer programming prob

lem and developed some heuristics to determine how to consolidate flows of shipments 

over the network. Powell and Sheffi [55] further extended this work by developing an 

interactive optimization system so that the users can more effectively plan for hard to 

quantify constraints. Keaton. M. H. [.3.3] determines number of terminals, and the rout

ing of trucks between terminals, to minimize costs subject to service level constraints. 

Heuristic techniques are used to solve this problem and using the model he determines 

the minimum operating costs for hypothetical firms at various density levels. Crainic 

and Rosseau [11] used a decomposition and column generation principle to determine 

what type and level of service to offer on what routes, in what modes, and how often. 
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Akvilmaz [1] proposed a method to determine shipment routes with the objectivo of 

minimizing the total empty ton-km. Hall [28] and Daganzo [14] developed a routing 

scheme where shipments are consolidated at the terminals that are nearest to the origin 

or destination. Recently. Farvolden and Powell [22] used a subgradient optimization 

approach for determining where to introduce and cancel service in the network. In con

trast. rather than determining the shipment route pattern. Crainic and Roy [12] focused 

on determining the routes for intercity drivers in an LTL network. Finally. Barnhart 

and Sheffi [3] developed a primal-dual heuristic approach for solving large-scale multi-

commodity networks and applied this technique to the problem of determining optimal 

vehicle routes. 

The majority of research on the stochastic shortest path problem has focused on a 

static version where it is assumed that the arc costs are realized at once and the path is 

fixed once the path is chosen. Such static versions of the stochastic shortest path problem 

are discussed by Frieze and Grimmet [24] and .Mirchandani [42]. Frieze and Grimnioi 

[24] considered the problem of finding the shortest distance between all pairs of vortices 

in a complete digraph of n vertices, whose arc lengths are non-negative random variables. 

On the other hand. Mirchandani [42] developed an algorithm to compute tlm expected 

shortest lime between nodes when the travel time on each link has a given independent 

di.screte probability distribution. 

Research on solving DSSP has been found to be limited: it is noticeably absent from 

the surveys by Dreyfus [21], Pierce [48]. Deo and Pang [20]. Croucher [13] proposed an 

algorithm to determine a dynamic shortest route when there is a positive probabilitv 

associated with each node that a particular outbound arc does not exist. Furthermore, 

it assumed that if an outbound arc does not exist, each of the remaining arcs has an 

equal probability of being traversed, regardless of their costs. Hall [27] developed a dy

namic programming approach to find the expected fastest path between two nodes in 

a network with travel times that are both random and dependent on arrival time at a 
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node. Psaraftis and Tsitsiklis [59] and Bertsekas and Tsitsiklis [4] considered the shortest 

path problem in acyclic networks where the arc costs depend on certain environmental 

variables that evolve according to a Markov process. Mirchandani and X'eatch [-llj con

sidered the routing of a hot job through a job shop network to minimize it.s e.\pectecl 

completion time when workstation processing time changes in a Markov fashion. Finally. 

Orda et. al. [44] considered the problem of traveling with the least e.vpected delay in 

dynamic computer communication networks where link delays change probabili.stically 

according to Markov chains. In addition. Orda ef. al. provided a simple polynomial 

optimal solution for networks with nodal stochastic delays. Polychronopoulos [49] sum

marized the results of static version of the shortest path problem and also descril)ed tlu> 

DSSP and also proposed was a simple solution approach to find the e.Kpected cost of the 

dynamic shortest path in a network where arc costs are discrete, independent, and finite 

random variables. 

Differing from most research on LTL networks that focus on static planning for 

shipment routes, this research addresses a dynamic aspect of shipment routr planning. 

This research considers an alternative strategy for routing priority shipments and this 

alternative routing strategy is formulated as a DS.SP model. This model is rliffprent from 

those studied in the literature in the following ways (1) the arc costs are independent, 

discrete, and finite random variables, and (2) the arc costs are realize^d dynamically, and 

re-routing can be made whenever a node is reached. For solving the DSSP model, a low-

order. polynomial-time algorithm is developed. Through some numerical experiments 

using a real data set. the impact of the explicit considerations of stochasticity and 

dynamism for shipment routing in LTL networks is also highlighted. 

Literature related to dynamic service network design falls into two categories: (1) 

research on LTL networks and (2) research on the single-link vehicle dispatching problem. 

Several criteria may be used to classify the vast amount of literature on LTL networks. 

The three different levels of planning problems are usually classified as strategic level. 



www.manaraa.com

IS 

tactical level and operational level. .At the strategic level, the following types of decisions 

are made: the physical network design (size and location of breakbulks and end-of-lines 

and the alignment of end-of-lines with breakbulks). allocation of investments, pricing 

and costing policies. .At the tactical level, the following types of decisions are made: 

demand forecasting, fleet sizing, routing of loaded trailers based on the forecast data 

and flow restrictions (Ma.ximum number of trailers that can be handled at a breakbulk 

facility), where to offer direct service, and when to move the empty trailers to appropriate 

locations based on the forecast data. .At the operational level, the following types of 

decisions are made: day-to-day operational decisions such as scheduling( which load must 

be assigned to which driver), when to release the loads, when to use rail, and how to 

route/schedule the drivers and what should be the optimum dispatching rules. 

The models which address the operational level problems can be real-time approaches 

or can address problems over a short planning horizon. The problems can also be clas

sified based on the fundamental nature of the problem, such as transportation mode 

(rail, truck navigation, or multimode). type of company (freight carrier or an industrial 

firm for interplant transportation or for distribution of products or for transportation of 

supplies), and type of flow (flow of empty vehicles only or flow of both loaded vehicles 

and empty vehicles sequentially or concurrently). The problems can also be difl'erenti-

ated based on solution methodology such as modeling assumptions (time domain may 

be static or dynamic, and quantities such as demand, and travel time may be stochastic 

or deterministic), modeling approach (algebraic formulation for subsequent optimiza

tion using mathematical programming techniques, analytic stochastic models such as 

queueing models or simulation models), and solution techniques (such as mathematical 

programming, network algorithms, stochastic optimization, or simulation). Several of 

these problems are addressed by the researchers in the literature. The related literature 

is summarized in Table 2.1. 

Literature related to dynamic service network design and service network design for 
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Table 2.1 Related literature 

Topic References 
Tactical planning T. G. Crainic. and .J. M. Rousseau 

[11] 
Strategic planning for 
rail/intermodal 

T. G. Crainic. M. Florian. and .1. 
Leal [9j 
J. Guelat. M. Florian. and T. G. 
Crainic [2-5] 

Intermodal policies for rail road M. S. Bronzini. and D. Sherman [o] 
K. Morlok. Edward, and Linda 
Nozick [43] 

Train routing and empty car distri
bution makeup 

.A.. E. Haghani [26] 

Truck backhaul optimization W. C. Jordan [31] 
Freight consolidation .]. F. Campbell [6] 

C. F. Daganzo [15] 
Routes for LTL carriers C. Barnhart. and Sheffi [3] 

J. F. Campbell [6] 
R. \V. Hall [281 

R. W. Hall [29j 

•Jacques Roy. and T. G. Crainic [CUj 
Comparative evaluation of route 
choice models 

M. .A. McGinnis [40] 

Common carrier/private fleets ship
ment frequency optimization 

R. W. Hall, and .\l. Racer [3U] 

Hub location problems J. F. Campbell [7] 
Routing priority shipments Raymond K. Cheung, and B. .VIii-

ralidharan [S] 
Survey (predictive models and ser
vice design models) 

T. G. Crainic [10] [10] 

1 
Survey (Empt\- flows and fleet man
agement models) 

P. Deja.x. and T. G. Crainic [19] 

Design of driver routes T. G. Crainic. and .). Roy [12] 
Dynamic fleet management W. B. Powell. T..A. Carvalho. G..A. 

Godfrey, and H. P. Simao [51] 
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Table 2.1 (Continued) 

Topic References 
Service network design C. F. Daganzo [14] 

J. M. Farvolden. and W. B. Powell 
[22] 
M. H. Keaton [33] 
W. B. Powell [50] 
VV. B. Powell, and Sheffi [o4l 
VV. B. Powell, and Y. Sheffi [ooj 

Stochastic/Dynamic vehicle alloca
tion 

L. F. Frantzeskakis. and \V. B. 
Powell [23] 
VV. B. Powell. [57] 
V\". B. Powell. [5S] 

Origin-Destination specific operat
ing costs 

.A.. F. Daughety. .M. A. Turnquist. 
and S. L. Griesbach [IG] 

Dynamic arc routing .1. Lysgaard [39] 
Simulation and optimization K. K. Lai. K. Lam. and W. K. Chan I 

[38] 
E. R. Petersen, and .A.. J. Taylor [-li ] 
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LTL carriers are briefly described below. Powell. Carvalho. Godfrey and Siniao [51] 

introduced a new framework called the Logistics Queueing Network for modeling and 

solving dynamic fleet management problems. The large problem was broken down into 

smaller subproblems. and the subproblems were solved to obtain the solution for the 

large problem. Frantzeskakis and Powell [23] used a convex appro.ximation method to 

solve the dynamic fleet management problem on stochastic networks. .Jacques Roy and 

Crainic [61] evaluated the changes in routing due to changes in demand variations, 

transportation services (rail), and changes in network configuration by modeling the 

freight routing problem as a non-linear mixed integer programming problem. .McGinnis 

[40] compared the four models of freight transportation the classical economic model, 

the inventory theoretic model, the trade off model and the constrained optimization 

model. 

Powell [oS] proposed a simple methodology that calculates the marginal value of an 

additional vehicle in each region in the future and uses this information to generate a 

standard pure network that can be efficiently optimized to give dispatching decisions 

for current operations. Lysgaard [39] used heuristics to solve the vehicle routing and 

scheduling problem in dynamic transportation networks. He assumes in liis rlynaini'" 

network that some of the arcs are present only during discrete tintes (arcs due to trucks 

traveling in ferries). Daughety. Turnquist and Griesbach [16] developed a mode! for 

rail that allows estimation of marginal operating costs on an OD basis and used this 

estimation to compute service cost and also to decide between which 0-D pairs service-

needs to be provided to maximize profit. Powell [56] addressed the vehicle dispatching 

problem with general holding and cancellation strategies. His study assumes that a 

vehicle dispatch could be cancelled if the dispatch rule was not satisfied within a certain 

period of time. For example a driver should not be kept waiting at a terminal for an 

extended period of time. 

The vehicle dispatching problem over a single link have been addressed by many 
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in the literature. In particular. Kosten [3o] (Medhi [37]. and Kosteii |.'56]) addressed 

the problem of dispatching a truck over a single link in which a truck was dispatched 

whenever the number of waiting passengers exceeded a certain threshold. Del) and 

Serfozo [IS] assumed that the waiting cost per customer was an increasing function of 

the number of customers in the queue and showed that the optimal decision to this 

problem had a control limit structure, proving that Kosten"s [3-5] solution to the single 

link problem was optimal. Weiss and Pliska [65] assumed that the waiting cost per 

customer was a function of the waiting time of the customer. They showed that the 

optimal decision is to send a vehicle if the marginal waiting cost is equal to the optimal 

long run average cost. 

Differing from most research on the single link vehicle dispatching problem, this 

research addresses a dynamic aspect of when to dispatch a trailer over a single link. Most 

of the literature assumes a steady state and finds a single threshold value by optimizing 

a particular function. .As. most practical applications are dynamic, a dynamic control 

policy is needed. But. calculating a dynamic dispatch policy cannot be done effectivelv 

using the techniques proposed in the literature because most of the literature assumes 

steady state. Therefore, a dynamic control policy for dispatching a trailer has lieen tlio 

major focus of this research. This research has been considered to be different from those 

in the literature in that a new algorithm has been developed to calculate an approximate 

dynamic dispatch policy. .-X recourse fimction is developed which gives the total cost of 

the system starting from current time, given the state of the system at current time. 

This policy exploits the linearity of the recourse function thus developed in solving the 

trailer dispatching problem. N'umerical experiments show that the dynamic dispatch 

policy outperforms the stationary dispatch strategy and that the solution obtained is 

close to the optimal. The algorithm developed has been found to be computationally 

fast and hence can be used for optimizing large LTL networks efficiently and effectivelv. 
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3 SIMULATION MODEL AND ANALYSIS 

3.1 Introduction 

The objective of the first part of this research is to develop a decision support tool to 

assist LTL managers in studying, analyzing, and planning LTL operations so that scarce^ 

resources (tractors, trailers, drivers, doors) are used more effectively and efliciently. Tlu" 

decision support tool is based on simulation model because there are niultiplo goals 

that often contradict each other and a simulation model assists in understanding the 

complicated interactions between the shipment route, closing rules, cost, and service 

level. The advantages of coordinated decision making as compared to local decision 

making are also better understood when using a simulation model. Its use also lielps in 

reducing the risk involved in implementing new or modified policies since these new or 

modified policies can be tested through the simulation model before being implemented. 

In addition, this model provides a tool for forecasting day-to-day operations of an LTL 

carrier under various policies, control strategies, and network structure. This fore-casting 

tool can help the LTL carrier in determining how many drivers and empty trailers are 

needed in the ne.\t 24 to 48 hours. 

Simulation models have been developed and used in the literature for several dii"-

ferent reasons. Real system e.xist. such as transportation or material handling sys

tems. but experimentation is expensive or can seriously disrupt the system. .Mathe

matical modeling of a system provides no practical, analytical or numeric solutions, 

w-hich occurs in stochastic problems. The optimum parameters computed in the analyt
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ical/mathematical model can be embedded in the simulation model, and the accuracy 

of the mathematical model can be verified. Simulation models have also been used in 

the literature to analyze long periods of time in a compressed format. In addition, sim

ulation model in the literature were developed for use as a design tool and later were 

transported into the actual system and reused. Since routing shipments in LTL networks 

satisf}- most of the above reasons, a simulation model has been developed. 

The primary motivation for this research sprung from the interest to develop a simu

lation model that could be used in day-to-day operations of an LTL carrier for accurately 

forecasting the number of empty trailers and the number of drivers needed in the ne.\t 4S 

hours at each terminal based on the present state of the system. Since, modeling a real 

world transportation system using an analytical/mathematical model that incorporates 

real world conditions, such as the union rules and other written and unwritten policies 

of a company is difficult, a simulation model was developed to describe the system to 

desired level of complexity and to easily verify that the developed model represents the 

actual system. .A.lso, experimentation of new techniques can be initially tested with tiiis 

model because experimentation of techniques such as dynamic routing of priority shij)-

ments. dynamic service network design in the real world is expensive or ran seriouslv 

disrupt the transportation system. The simulation model developed can do a lo day 

simulation in a few minutes, and several different scenarios with different parameters 

can be analyzed for their effect on cost/service in a relatively short period of time. 

The main contribution that this decision tool makes is to provide an understanding 

of the complicated interactions between the shipment route, closing rules, cost, and 

service level. The simulation model is also used to obtain loading time distribution for 

the dynamic priority shipment routing problem. .An object oriented style was used for 

the simulation model, therefore it can be easily extended for the rail/container industry. 

The following performance measures are examined using the simulation model: 
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• Utilization of the terminal 

• Utilization of the trailers 

• Total cost 

• Service level 

Numerical experiments in this chapter are clone by varying the following parameters 

to improve the above performance measures have been summarized in this chapter and 

the results are tabulated: 

• Closing capacity for trailers 

• Number of primary, direct, and opportunistic directs in the load pattern 

• TTMS parameters 

• Ma.ximum amount of time an open trailer can be held (holding time) 

The remainder of this chapter has been organized as follows: First, it lists out the 

assumptions made in this model. Second, it lists out the policies current Iv followed 

by LTL carriers to close/unload a trailer. Third, it explains the general framework of 

the simulation model with an example. Fourth, it describes the input, output, and 

implementation details of the simulation model. Finally, the calibration and validation 

done on the simulation model and the numerical results obtained are explained in detail. 

3.2 Model 

3.2.1 Assumptions 

The following simplifying assumptions are made in the simulation model: 

• LTL carrier operations are restricted to domestic operations. 
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• Travel time between terminals is assumed to be deterministic. 

• Time to load and unload the vehicle is assumed to be constant. 

• Once closed, the trailer will be dispatched in a fixed amount of time, but the timr 

is dependent on terminal type. 

• Holding times for the trailers depend on terminal type. 

3.2.2 Input to the model 

The simulation model takes the following as input: 

• Parameters/policies (rules for closing the trailer) 

• Network 

• Shipments 

• Travel time information 

• Load plan 

• .Service requirements 

• Terminal/trailer characteristics 

• Rail schedules 

3.2.3 Rules for closing/unloading a trailer 

The following policies are usually followed by LTL carriers in deciding when to close 

the trailers and when to unload the trailers. The same policies are used in this simulation 

model to close/unload a trailer: 

• If the trailer is filled to a certain minimum capacity, the trailer is closed. 
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If the TTMS of a certain number of shipments is violated for a direct service-

trailer and if the trailer is filled to a certain minimum capacity, the trailer is 

closed. The reason for closing is not to delay the shipments and thus violate 

service commitment. 

If the TTMS of a certain number of shipments is violated for a direct servirr 

trailer and if the trailer is not filled to a certain minimum capacity, the trailer is 

unloaded and the shipments are loaded to its primary consolidation facility. The 

reason for unloading is not to ship the trailers almost empty for a long distance 

(direct service) and thus increase the operating cost. 

If the TTMS of a certain number of shipments is violated for a primary service 

trailer, the trailer is closed. The reason for closing the trailer is not to delay the 

shipments and thus violate the service commitment. Since the trailer is going to 

travel empty for a short distance(primary service), it will not have a l)ig itn|)acl 

on the operating cost. 

If the ma.\:imum holding time is reached for an open direct service trailer then the 

trailer is unloaded. The reason fur unloading is noi to have a trailer open in one of 

the terminal doors for a very long time causing congestion at the terminal. .Also, 

if closed the trailer will be traveling empty for a long distance (direct service), .so 

the trailer is unloaded. 

If the maximum holding time is reached for an open primary service trailer, the 

trailer is closed. The reason for closing is. not to have a trailer open in one of the 

terminal doors for a long time, thus causing congestion at the terminal and also, 

the trailer, if closed is going to travel empty for only a short distance (primary 

service). 
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In order to describe the closing of a trailer mathematically the following variables 

are defined where: 

T: the time domain 

time to make service(TTMS) for the trailer c T 

la', the trailer opening time, to G T 

t: the current time, t € T 

.V; the set of terminals 

/: the current terminal i 6 A' 

j: the next terminal j G .V 

5: the current inventory level (5 6 R) 

g: a function of several factors that affect unloading of a trailer 

//: a function of several factors that affect the closing of a trailer 

a binary variable, which takes on a value of 1 if the trailer is closed at time /. 0 

otherwise 

UfiSf) a binary variable, which takes on a value of 1 if the trailer is unloaded at rime / 

from a opportunistic or direct service otherwise it takes a value of 0 

The closing of a trailer is shown mathematicallv as follows: 

I if S F  < G ( S . J ^ " ' \ I C J . T . L . J :  

0 otherwise 

The unload of a trailer can be mathematically shown as follows: 

1 if Sf > 

0 otherwise 

hi order to minimize cost by determining when to close/unload a trailer it is necessary 

to optimize the functions g and h. Numerical experiments are done using the simulation 

model in order to understand how the different variables in the functions ̂ and It interact 

with each other. 
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3.2.4 General framework of simulation 

The basic steps in the simulation are described as follows: 

Step 1. READ network information/loadplans/service level/parameters 

Step 2. FOR time-Step = I TO X DO 

Step ."L FOR each of the options = opportunistic direct, direct, primary DO 

Step -1. READ bills and store in Qf (where Qi is defined as an ordered queue at terminal / i 

Step 0. IF (capacity of the terminal is not violated) THEN 

Move the bills to (where QQ^I is defined as an ordered queue 

for bills going between origin o and destination d] based on the load jjattern 

Step 6. FOR each of the bills in available in the current time step 

Step 7. IF ((certain predefined minimum capacity(.r^. .r^.x'') of the trailer is filled betwrni 

the origin and destination of the trailer) OR (((any or some of the bills in the trailer 

have l:)een held for too long (/'"/')) OR (waiting for any longer will result in TTMS 

constraints being violated)) AXD (the trailer is a primary trailer))! 

Close the trailer and dispatch: 

Compute the time the trailer will reach its destination: 

IF (bills have reached their original destination) 

Remove the bills from the system ; 

IF (bills have not reached their original destination) 

Add the bills to the queue at the destination: 

Step S. IF (((any or some of the bills in the trailer has been held for too 

long OR (waiting for any longer will result 

in TTMS constraints being violated)) AND (the trailer is 

a direct trailer) A.\'D (capacity of the trailer is less than certain 

minimum (.r^^. ))) 

Remove the bills and move to the primary OD: 
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Step 9. IF (time_step < X) GOTO Step 2. 

3.2.5 Example of the simulation model 

The general framework of the simulation model can be described by using a small 

example shown in Figure 3.1 (A. B. C. D. E. F. G). If a shipment originates at Boston 

and its final destination is Los Angeles and if there is an opportunistic direct service 

between Boston and Los Angeles, the shipment will be loaded on a trailer going to 

Los Angeles (A). If the capacity of the trailer exceeds a certain minimum capacity, the 

trailer is dispatched from Boston to Los Angeles: Otherwise, if the TT.MS or holding 

time expires, then the shipment is unloaded (E) and loaded into the primary service 

trailer going to New }'ork (D). The amount of time that the shipment spends at the 

Xew }'ork terminal before being loaded into a trailer depends on the current inventory 

level and the congestion level at .Wtr VorA* terminal. If there is no opportunistic direct 

service between Boston and Los Atigeles. then the shipment going from Boston to Lo.-  ̂

Angeles will be loaded into a direct service trailer going from Boston to San Francisco 

along with shipments going to other nearby cities such as Sacramento and San Ditgo f B). 

At San Francisco, the trailer is unloaded, sorted based on destination and loaded into 

the appropriate trailer. The amount of time the shipment spends at the San Francisco 

terminal before being loaded into a trailer depends on the current inventory level and 

the congestion level at San Francisco terminal. However, if the capacity of the direct 

service trailer does not e.xceed certain minimum capacity and if the TT.MS or holding 

time expires, then the shipment is unloaded from the direct service trailer (C) and moved 

into a primary service trailer going to New >brAr along with the shipments going to other 

breaks such as Seattle and Portland (D). If the primary service trailer has a certain 

minimum capacity filled, the trailer is dispatched( F). but if it does not meet a certain 
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minimum capacity and either the holding time or the TTMS expires, then the primary 

trailer is dispatched (G). 

3.2.6 Output of the model 

The simulation model produces the following output. 

• List of trailers dispatched and related information 

• OD statistics, such as the number of trailers closed, number of bills, weight of bills, 

and loading time. 

• Bill statistics, such as number of bills delayed, transfer ratio, and average delay. 

• Trailer statistics, such as capacity filled, number of bills, breakdown of closed/unloade 

trailers, and trailer miles traveled. 

3.3 Implementation and Object Design 

In this section, object design and implementation are described briefly. The simula

tion model was developed using an object-oriented approach. There are ce\^era! objefts 

such as trailer, bill. OD and terminal. Functions associated with each of these objects 

manipulate these objects. For example, the trailer object contains all the information 

about the trailer such as the trailer origin, trailer destination, number of bills in tlie 

trailer, total weight in the trailer, the time the trailer was closed, the total volume in the 

trailer, opening time of the trailer, the time the trailer needs to depart from the current 

terminal in order to meet service reciuirements. the bucket to store the bills loaded in 

the trailer and the current terminal. The bill object contains information about the 

bill, its size, its volume, current terminal, its origin, its destination, and service date. 

The OD object contains information about the distance between the current origin and 

destination, the service commitment, whether there is a rail schedule available between 
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the given origin and destination, and a bucket to store the bills between the* given origin 

and destination. The terminal object contains information about terminal such as its 

latitude, longitude, terminal closing time, the bucket to store the bills at the terminal, 

the time zone, and the type of terminal. The buckets in the trailer. OD and terminal 

objects are implemented by using a heap data structure because it is more efficient, hi 

the terminal bucket and the OD bucket the bills are stored according to arrival time, 

but the bills are stored based on the time to make service, in the trailer iiucket. The 

bills are stored in the terminal object according to arrival time because the bill thai 

comes first will be sorted first at the terminal and then moved to the door where it is 

being loaded for the corresponding OD. The bills in the trailer object are stored in a 

heap based on the TTMS. because it is easier to compute the time the trailer can wait 

at the current terminal without affecting the service commitment made to the customer. 

The terminal and OD objects are stored in a hash table for the following rea.son. .-\ 

national LTL carrier can have several hundred terminals and thousands of OD |)airs. 

In the simulation model developed, there is a need to access the terniinal/OD objects 

from the name of the terminal/OD several times for each of the bills in the sysiem. The 

name of the terminal/OD is obtained from the origin and destination of tlif bill. In 

order to access the terminal/OD object of interest from the name of the terminal/OD 

quickly, hash tables were used. .Also, in order to check whether the above implemented 

model represents the actual operation of the LTL carrier, calibration and validation of 

the model are done as described in the ne.\'t .section. 

3.4 Calibration and Validation 

Calibration and validation are needed to show that the model developed is credible 

and accurately represents the system and to prove that the model is trustwortliN-. Cali

bration and validation of the model were done to ensure that the model behavior is the 
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same as the actual system behavior. 

Calibration was done by comparing the output results of the model to the actual 

data. Policies/control strategies used in real life were used to calibrate the model. 

The following statistics and measurements were used to evaluate the accuracy of the 

simulation. The number of trailers closed from each break in the model was compared 

to the actual numbers. The number of trailers closed from each end-of-line is compared 

with the actual numbers. The incremental/cumulative number/total weight of bilL^^ 

processed at each terminal and for each OD pair was compared to the actual numbers 

every hour. The incremental/cumulative number of trailers closed at each terminal and 

for each OD pair was compared to the actual numbers every hour. The number/total 

weight of bills processed on each day of the week was compared against the actual 

values for each terminal and OD pair. The number/average weight of trailers closed on 

each day of the week was compared against the actual values for each terminal and 01) 

pair. Between EOL-EOL. EOL-Break. EOL-FBreak. Break-Break and Break-FEOL the 

number of trailers closed, number/weight of bills processed, and the average weight in 

each trailer were compared against the actual values. Figure 3.2 shows the plot of actual 

trailers dispatched against the number of trailers dispatched in the simulation nioriel for 

some of the major terminals in an LTL network. Figure 3.3 shows the plot of actual 

trailers dispatched against the number of trailers dispatched in the simulation model for 

some of the major links in an LTL network. 

.•\n example of how calibration was done in the simulation model after compar

ing to the actual data is explained. Some specific rules were ignored in the forecast

ing/simulation model because these rules did not seem to have a significant impact on 

LTL carrier operation. However, certain other rules were incorporated in the simulation 

model. Since the simulation model identified the existence of .some inconsistencies in 

the simulation data and actual data at some specific terminals and services, where these 

rules are applied, such as the daily dispatch, reduction in threshold capacity for closing 
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trailers, holding time, and TTMS parameters. Therefore, these rules were incorporated 

in the simulation model. 

.After the calibration, the simulation model was found accuratc. The output statistics 

of the simulation model was compared against the actual values. The error of the 

simulation model when compared to the actual model was found to be less than four 

percent. 

3.5 Numerical Results 

The numerical e.xperiments were done to assess the most effective closing rules/strategies, 

and to understand the complicated interactions between the shipment route, closing 

rules, cost, and service level and their effects on the final cost of the system and the 
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service level provided. 

.Vumerical e.xperiments were done to compare the primary service, with primary + 

direct service and primary -f- direct -i- opportunistic direct service, .\umerical e.xpcri-

ments were also done to assess the effects of holding time. TT.VIS. closing capacity on 

the total cost of the system, and service level provided. The numerical e.Kperiments have 

been described in detail in the following sections. 

3.5.1 Primary vs Primary + Direct 

Hypothesis: Using primary + direct service is better than using primary service. 

Expected Outcome: Primary + direct service will reduce delay, reduce operating 

cost, reduce transfer ratio, increase percentage of early bills, reduce percentage of late 

bills, and reduce trailer utilization. 
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As can be seen from Table 3.1. the number of bills delayed and the average time the 

bills were delayed was drastically reduced in the model in which both the primary and 

direct service are used. This was due to the fact that the bills go through a smaller 

number of breakbulk terminals when using direct service. It was found that the direct 

service also reduced the operating cost and transfer ratio. The reduced transfer ratio 

indicated that bills were handled in fewer breakbulk terminals and hence handling cost 

was reduced. Using direct service reduced consolidation, and hence the trailers tra\el 

with lesser capacity filled on average. 

Table 3.1 Comparison of different service policies 

Characteristic Primary Primary + 
Direct 

Primary + 
Direct -i-

Opportunistic 

Characteristic 

(Values scaled for confidentiality) 
Operating 

cost 1.05 1.03 1.00 
.N'umber 

of trailers 0.94 0.93 LOO 
•Average trailer 

Capacity 1.15 1.08 1.00 
Transfer 

ratio 1.33 1.17 1.00 
Percent of bills 

late 1.S4 1.19 LOO 
.Average time 

early 0.75 O.Sl LOO 
.Average time 

late 1.30 1.19 LOO 

3.5.2 Primary -f Direct vs Primary •+• Direct + Opportunistic direct 

Hypothesis: Using primary + direct + opportunistic direct service is better than 

using primary service. 

Expected Outcome: Primary + direct + opportunistic direct service will reduce delay, 

reduce operating cost, reduce transfer ratio, increase percentage of early bills, reduce 
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percentage of late bills, and reduce trailer utilization. 

.A .S can be seen from Table 3.1. the number of bills delayed and the average time 

the bills were delayed was drastically reduced in the model in which primary, direct and 

opportunistic direct services were used. This was due to the fact that the bills go through 

a smaller number of breakbulk terminals when using opportunistic direct service. The 

opportunistic direct service also reduced the operating cost and transfer ratio. Reduced 

transfer ratio indicated that bills were handled in fewer breakbulk terminals and hence 

handling cost was reduced. Using opportunistic direct service reduced consolidation and 

hence the average weight a trailer is filled is reduced. 

3.5.3 Holding time 

In the numerical experiments, the holding time was fixed at three different levels 

(two days, one day. half a day) to determine the effects of holding time on the total cost 

of operations. 

.•\s can be seen from Table 3.2. increasing the holding time reduced the transfer ratio, 

operating cost, the number of trailers used and the average time the bills were early. Due 

to increased holding time, the trailers waited for a longer period of time at a terminal 

to get filled. Due to this reason there was a high possibility of the trailers being closed 

to a direct service and hence the number of trailers utilized reduced as holding time 

increased. Since direct service is used more often due to increased holding time, the 

handling cost that was present in primary service was eliminated, which in turn reduced 

the total operating cost. The bills waited for a long period of time at a terminal due to 

increased holding time, and hence the average time the bills were early at the destination 

decreased. Interestingly, although the bills were held for a longer time at a terminal due 

to increased holding times, the average time a bill was late and the number of bills that 

were delayed reduced when the holding time was increased. 
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Table 3.2 Comparison of different holding time policies (scaled) 

TTMS Capacity Characteristic Holding time 
2 day 1 da\- 1/2 day 

Operating cost LOO LOo 1.13 
Number of trailers LOO L03 1.11 

Average trailer capacity LOO 1.03 1.06 
High Transfer ratio LOO 1.10 1.15 

Percent of bills late LOO 0.S6 0.98 
Average time late LOO O.SO 1.02 

Average time early LOO 0.93 0.90 
Operating cost LOO 1.03 1.10 

Number of trailers LOO 1.01 LOS 
Average trailer capacity LOO 1.02 1.04 

75 VI Medium Transfer ratio LOO 1.06 1.09 
Percent of bills late LOO LOO LIS 
Average time late LOO 0.97 1.22 

Average time early LOO 0.96 0.94 
Operating cost LOO 1.02 1.09 

Number of trailers L.OO LOO 1.06 
Average trailer capacity L.OO 1.02 1.05 

Low Transfer ratio LOO 1.06 1.09 
Percent of bills late LOO 1.05 1.33 
Average time late LOO 0.98 1.27 

Average time early- LOO 0.97 0.95 
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3.5.4 TTMS 

In the numerical experiments, the TTMS was fixed at three different levels ( 5 5  per

cent. 65 percent and 75 percent of capacity filled before sending the trailer) to determine 

the effect of TTMS on the total cost of operations. 

As can be seen from Table 3.3 decreasing the TTMS closing capacit\" increased op

erating cost and the number of trailers closed and on the other hand, reduced the 

percentage of late bills and average amount of time the bills were late. Since the trailers 

were closed with less capacity when the TTMS of the trailer e.xpires. more trailers are 

closed. As many trailers were closed, the fuel, equipment, and labor costs increased and 

hence, increased the total operating cost. Since the trailers were closed earl\ when the 

TTMS of the trailer expired, the number of late bills is reduced and the average time 

that the bills were late was less. 

3.5.5 Capacity 

In the numerical experiments, the minimum fill capacity for closing a trailer was 

fi.xed at three different levels (high, medium and low to determine its effect on the total 

cost of operation and on the amount of" early/late bills. 

.A .S can be seen from Table 3.4, decreasing the closing capacity increased the operating 

cost, the number of trailers closed, the number of late bills, amount of time the bills 

were late and the average amount of time the bills were early and on the other hand 

reduced the utilization of the trailer and the transfer ratio. Since the closing capacity wa.s 

reduced, more trailers were closed at less capacity and hence operating cost increased 

due to increase in labor, equipment, and fuel costs. Since the trailers are closed at 

low capacity, the bills were early and. hence the average amount of time the bills were 

early increased. Interestingly, decreasing the closing capacity did not decrease either the 

number of late bills or the average amount of time the bills were late. 
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Table 3.3 Comparison of different TTMS policies (scaled) 

Capacity Holding Characteristic TTMS Closing 
Time 00% 60% 75% 

Operating cost 1.07 1.04 1.00 
Number of trailers I.OS 1.04 1.00 

Average trailer capacity l.OI 1.01 1.00 
2 day Transfer ratio 1.02 1.01 1.00 

Percent of bills late 0-51 0.65 1.00 
Average time late 0.63 0.76 1.00 

Average time early 0.9S 0.99 1.00 
Operating cost 1.07 1.04 1.00 

Number of trailers 1.06 1.03 1.00 
Average trailer capacity 1.01 1.00 1.00 

High 1 day Transfer ratio 1.02 l.Ol 1.00 
Percent of bills late 0.57 0.68 1.00 
Average time late 0.68 0.78 LOO 

Average time early 0.99 0.99 1.00 
Operating cost 1.05 1.02 1.00 

Number of trailers 1.04 1.02 1.00 
Average trailer capacity 1.00 1.00 LOO 

1/2 day Transfer ratio 1.01 1.01 LOO 
Percent of bills late 0.62 0.73 LOO 
Average time late 0.68 0.79 LOO 

Average time early 1.00 1.00 1.00 
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Table 3-4 Comparison of different policies (Capacity)(scaled) 

TTMS Holding Characteristic Capacity 
Time High Medium Low 

Operating cost 1.00 1.02 1.04 
Number of trailers 1.00 1.03 1.07 

Average trailer capacity 1.00 0.95 0.S9 
2 day Transfer ratio 1.00 0.9S 0.97 

Percent of bills late 1.00 1.05 1.11 
Average time late 1.00 1.03 1.14 

Average time early 1.00 1.01 1.02 
Operating cost 1.00 1.01 1.03 

Number of trailers 1.00 1.04 1.07 
Average trailer capacity 1.00 0.94 0.88 

75% 1 da\- Transfer ratio LOO 0.98 0.97 
Percent of bills late 1.00 1.05 1.05 
Average time late 1.00 1.03 1.07 

Average time early- 1.00 1.02 1.03 
Operating cost 1.00 1.02 1.03 

Number of trailers 1.00 1.03 1.07 
Average trailer capacity 1.00 0.95 0.90 

1/2 day Transfer ratio 1.00 0.99 0.98 
Percent of bills lare 1.00 1.00 1.00 
Average time late 1.00 1.03 1.05 

Average time early 1.00 1.02 1.04 
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3.5.6 Congestion 

The simulation model can also be used to identify the most congested breaks/under-

utilized breaks so that the EOL"s can be reassigned to reduce congestion/increase uti

lization. Figure 3.4 shows congested breaks and breaks which are underutilized if specific 

load plan and policy were used and for specific configuration of the terminal. The poli

cies and load plans can be changed to ensure that the congestion is avoided and that 

underutilized terminals are properly utilized. These experiments in changing the poli

cies. and the load plans to reduce the congestion or to increase utilization are costly and 

impossible to be done on the actual operations of an LTL carrier. Thus, the simulation 

model is very helpful in doing such e.xperiments and for analyzing the results in a short 

period of time. 
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The simulation model is also helpful in finding out the effects of TTMS. holding 

time and capacity on the total operating cost of the system and the number of bills 

delayed. The simulation model also indicates that decreasing the minimum capacity to 

be filled does not necessarily decrease the number of delayed shipments. The numerical 

experiments also show that decreasing the holding time does not decrease the number 

of delayed shipments. The number of delayed shipments is only affected by TTMS. 

The numerical experiments also show that using opportunistic direct service with direct 

and primary service is better than using primary service alone. The simulation model 

suggests different strategies to improve LTL carrier operations by identifying certain 

parameters that need to be optimized. For e.xample. the simulation model point.s out 

that in dynamic service network design the threshold value for closing a trailer i.s not 

a single number, but a continuous function dependent on t. S'l- .Also, the simulation 

model is useful in obtaining loading time distributions for the dynamic priority shipment 

routing problem. The simulation model after calibration is accurate and can be used in 

day-to-day operations of an LTL carrier in forecasting the number of empty trailers and 

the number of drivers needed in the next 24 to 4S hours. 
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4 DYNAMIC ROUTING OF PRIORITY SHIPMENTS 

4.1 Problem Description 

Currently, both regular shipments and priority shipments are routed through the 

LTL network using the same fixed load patterns. At a break, priority shipments receive 

special attention and thus require less transit time. In this research, an alternative 

strategy for routing priority shipments is assessed, a strategy where the route of priority 

shipments can be changed dynamically (that is. the choice of route is not bound by 

the load patterns) and is determined on the basis of real-time information, such as the 

congestion level and the a\'ailability of drivers at the current break. 

The contributions of this research are the following. First, the proposed dynamic 

routing strategy is formulated as the problem of finding the e.xpected length of the 

dynamic stochastic shortest path (DSSP) in networks with discrete, independent random 

arc costs. Second, a new efficient algorithm to solve DSSP in real-time is developed. It is 

also shown that the dynamism of DSSP can actually help break down the combinatorial 

nature that appears in the static verison of stochastic shortest path problems which are 

.\'P-hard (Kamburowski. [32]). The results of this research allows to measure the time 

that can be saved if the real-time information at terminals is fully used. This strategy 

is evaluated for conditions under which it works well, using real data. 

The research was primarily motivated by the fact that a typical shipment spends 

more than 50 percent of the time in transit at terminals. Time spent by a typical 

shipment going from Boston to Los .A.ngeles through the breaks at .N'ew Vork and San 



www.manaraa.com

46 

Francisco is shown in Figure 4.1. While the travel time on the road over the long-

haul is relatively stable, the transit time at terminals, such as the time for loading the 

trailer, and the waiting time for the trailer to be dispatched, can vary substantially. For 

e.xample. the loading time can range from one hour to 48 hours. Thus, a natural strategy 

to reduce the delivery time of a shipment is to reduce the time it spends at terminaLs. 

One way is to allow shipments to use routes that are not available in the load pattern. 

Consider the shipments currently at the New York break that are scheduled for dispatch 

to Los .-Vngeles. The load pattern indicates that the shipment should go through the 

San Francisco break with an estimated travel time (on road and in transit) of SO hours. 

However, if the trailer that goes from New York for San Francisco had departed recently, 

the next trailer will not depart for at least another 20 hours. In contrast, the trailer that 

goes from New York for St. Louis is ready to depart and the estimated travel time using 

this route is 90 hours. In this example, it will be faster to send the shipments through 

St. Louis. In the network context, this strategy can be represented by DSSP or rather 

finding the shortest path between a pair of nodes in a network with random arc costs 

(details are discussed later). Furthermore, the path can be re-routed whenever a node 

is reached and the costs of the arc emanating from this node arc realized. 

In general, there is a trade-off between the delivery time and the total cost involved. 

.•\ny routing deviating from the load patterns may result in a higher cost over time. 

This study focuses on routing priority shipments since such shipments constitute only a 

small portion (typically o - 10 %) of total shipments, the deviation of these shipments 

from the load patterns may not cause a major increase in total cost. The capability to 

route these shipments dynamically, however, can reduce the delivery time, which is the 

most critical objective for priority shipments. The assumption that the possible small 

increase in total cost is well compensated by the improvement of the level of service, 

motivates this research. 

The objectives of this research are: 
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• To find an alternative routing strategy- for routing priority shipments that can 

improve the level of service for priority shipments 

• To determine whether this alternative routing strategy can be used in real-time 

for a large LTL carrier 

• To determine if the consideration of the stochastic and dynamic aspects of LTL 

routing is worthwhile 

The remainder of this chapter is organized as follows. Next section, models the 

routing of priority shipments in a LTL network as a dynamic and stochastic shortest 

path problem and describes the solution approach in detail. Finally, the numerical 

experiments indicate the time can be saved if real-time information at the terminals is 

fully used, using real data sets. 

4.2 Solution Methodology 

.•\s mentioned earlier, the travel time for a shipment from its origin terminal to its 

destination terminal consists of the time spent on the road (Tr) and the time spent at 

terminals (7)) where the latter may include the following: 

• Waiting to be unloaded from a trailer to an empty dock. 

• L'nloading shipments from the trailer. 

• Loading shipments onto a trailer until the trailer door is closed. 

• Waiting for the closed trailer to be dispatched. 

Furthermore, if a direct trailer cannot be closed (due to e.xcessive loading time and low 

capacity), additional time is needed for transferring the shipments on this trailer to a 

primary trailer, .\lthough TV and Ti are both random variables, the variance of TV is 
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considerably smaller than that of T f .  which depends on a wide range of factors, such as 

day of the week, closing times at terminals, service deadlines of the shipments, sizes of 

the shipments, and driver availability. Since the physical mileage between the terminals 

is fi.xed. a substantial decrease on Tr is unlikely. Hence, the primary focus should be to 

decrease Tf. 

Consider that terminal i  is an end-of-line. terminal j  is its primary break, and ter

m i n a l  k  i s  a  f a r  b r e a k  w h e r e  /  — >  A r  i s  a  d i r e c t  r o u t e  i f  t h e  d e s t i n a t i o n  i s  t e r m i n a l  n .  

Let. 

= Transit time at terminal i if i —)• J is a primary route 

= Transit time at terminal i if i h is a direct route i.k 

t -  j , j —  Time needed to transfer shipments from the direct trailer ( / —>• A-) to the 

primary trailer (/ —> j] plus the waiting time until the primary trailer is 

dispatched. 

[.j= Probability that the shipments on the direct trailer (/ —>• k) need to 

be transferred onto the primary trailer (/ —r j) 

r - j  =  Travel time on the road from terminal i  to terminal j  

Routing of shipments from terminal / to the ne.xt terminal (heading to terminal ii) 

is modeled as a network. .Arc costs are used to represent the travel times. Since there 

are different components of travel time, some artificial nodes need to be generated in 

addition to creating nodes for the physical terminals. First, a node for each terminal 

is created as denoted by i .  j  and k  in Figure 4.2. Second, two nodes are created, as 

denoted by i j  and i f ,  to represent the primary route and the direct route, respectively. 

.A.lso. an additional node is generated as denoted by (described later). Third, arcs 

between nodes i  and i :  and nodes i  and // are created with arc costs of and . J  K  i , j  i . k  

respectively. These arcs capture the transit time at terminals if the shipments use the 
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primary trailer and the direct trailer. Moreover, arcs from node i j  to node j  with the 

cost of rj j and from node to k with the cost of r- f, are created. Such arcs reflect 

the travel times between terminals. Fourth, an arc is added from node to node 

to reflect the case where the shipments on the direct trailer may need to be unloaded 

and put on the primary trailer. Thus, the arc cost, denoted by f.j. is a bi-valued 

random variable with the following probability mass function: Pr(,f^- j^.j = 0) = /jy 

and Pr(^j f.j = oc) = \ — p- Finally, an arc is added from node to node ij with 

the arc cost of to capture the transfer time. 

Primary terminal 

<D 

Terminal 

Direct terminal 

k 

Figure 4.2 .N'etwork representation of the load patterns 

The small network described above represents only the direct and primary patterns 

for the given OD pair. If use of other shipment routes is allowed, the number of nodes 

and arcs needs to be increased in the network. For e.Kample. Figure 4.3 depicts the 

network when St. Louis is being considered as an alternative break for the shipments 

going out of San Francisco and heading to Los Angeles. 
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Figure 4.3 Network for the Boston - Los .Angeles shipments with St. Louis 
as an alternative break 
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The following assumptions are made in such a network: (1) arc costs are independent 

discrete random variables, and (2) the network is acyclic. The independence assumption 

is used to simplify the network model. Since an LTL network can have several hundred 

terminals and serves hundreds of thousands of shipments daily, the possible states of 

the entire LTL network is practically infinite, making the problem e.xtremeh" large and 

comple.x. Furthermore, the arc costs depend on many independent factors (such as a 

large number of independent shipments and a\'ailability of drivers): thus the independent 

assumption seems reasonable. The second assumption reflects the situation where once 

a shipment leaves a terminal, the shipment will not return to the same terminal again. 

.\e.xt. a model is presented in a more generic stochastic network framework where the 

node types and arc types are not differentiated. Let G = (.V. .4) be a network where A' 

is the set of nodes and .4 is the set of arcs. Without loss of generality, consider that the 

shipment is going from node 1 to node n. Let the inde.xes of the nodes be topologically 

ordered such that for every arc {i.j). i < j. .\'ote that by the acyclic property, there is 

n o  d i r e c t e d  p a t h  f r o m  j  t o  i .  

S { i )  —  Set of successor nodes of node i  (that is. the set of | { i . j )  € .4}) 

If the shipment is going from node I to node n .  then the DSSP can be mathematically 

written as: 

Let. 

Cjj = Random cost of arc ( i . j )  where { i . j )  G .4 

c^j = realization of the cost of arc ( i . j )  

I / = Cost of the dynamic shortest path from node i  to node // 

1/ = Expected cost of the dynamic shortest path from node i  to node n  

\ \  =  E [ V i ]  =  E  (4.1) 

where. 

\ ' j  =  E [ V : ] =  E  min { c j i .  +  V i , }  VJ = 2 n-1 
J  '  J '  k G S i j )  ^  

(4.2) 



www.manaraa.com

-53 

with the boundary condition Vn = 0. If the arc costs cij are known as c^j. then 

Equation (4.1) can be replaced by 

11 = min {cf' -l-l;} 

E.xcept for the expectation operator. Equations (4.1) and (4.2) are similar to the 

classical Bellman's equation that defines the optimal conditions for the shortest path in 

a deterministic network. For acyclic, deterministic networks, the label-setting method 

is the most efficient algorithm. Therefore, for DSSP. a label-setting method is expected 

to be the most efficient solution approach as well. By assuming that the values of 

Vj. j £ S{i) have been determined. Vy is computed as follows. 

For simplicity, the number of possible realizations of arc costs is assumed to be the 

same for all arcs. Let 

R = Number of arcs emanating from node / (that is. |5(/)|) 

I\ = Number of possible arc costs of an arc 

.A naive approach to computing \ ] is by total enumeration: for each possible com

bination of the cost realizations, corresponding probability is found, the minimization 

problem is solved that is embedded in expectation of Equation (4.2), then the expected 

value is obtained. Clearly, this approach needs 0{I\^) steps and therefore not practical 

for large problems. 

Notice that the minimization in Equation (4.2) is simply a problem of finding the 

minimum of R independent random variables. Thus, to compute \ 'j. the fact that the 

event of I"- > c is equivalent to the event of c-j + V'j > c for all j € S{i) is utilized, 

where c is some real number. Due to the independence assumption. Pr(\ y > c) can be 

written as. 

Pr(V'- > c) = JJ Pr(cfj + Vj > c) (4.3) 
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Since the number of possible values of c is R - f \  and for each c. Equation (4.3) needs O i  R )  

In the following discussion, the random variables on the right side of Equation (4.3) 

are decomposed into some special, bi-valued random variables that are ranked in increas

ing order which will be described later. By using these random variables, the required 

computation steps can be further reduced. Without altering the model and results. 

Vj = 0. Vj 6 S(i) is assumed. There two major steps in computing V / are: (I) for each 

arc cost cjj, [\ bi-valued random variables are created, and (2) for all bi-valued random 

variables generated from all Cjj. j G 5 are used to obtain \ ] . 

Let T^: be a bi-valued. random variable that takes the values of • and dc only and 

steps, the computation of the probability mass function of \ requires the 0{R~ • I \ )  

steps. 

denote 

lij = Prti/j = 

That is. Pr{x^j  =  oc)  = 1 — = P v ( x j j  > c ^ j )  = 1. First, the goal is to compute the 

values of q^j such that 

minlx 

Let c be some real value. The random variable C j : > c if and only if all •  >  c . k  =  
J  ^  J  

1.2 A", and thus 

.\ssume further that the possible arc costs are ordered: 

Then, for any index /. I < k (that is, c - • < c- ). the result is 

(4.7) 

(4.6) 

On the other hand, for / > k. the result is 

Pr(iij > = PHi'ij > 4j) = 1 (4.8) 
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I r  A: 4-1 Therefore, for c = Cy • and for c = c- • and by using Equations (4.5). (4.7). and (4.S). 

the result is 

K  k - l  k - l  
pr(ii;>4}) = n n P ' ( f 7 > 4 ) =  i - f " )  

(=1 ^ (=1 1=1 

K k k 
P H c , j > c f ^ h  =  

/ = i  / = i  1 = 1  

By subtracting Equation (4.10) from Equation (4.9). the result is 

Pvlcij^cfj) = (4.11) 

Hence, the value of q^- can be determined by the recursion 

Pr(c; =4-) 

" h  = irr— 

n i l - ? , ' ) )  
/=1 

For each arc ( i . j ) .  computing q j j  can be achieved in 0 {  [ \ ]  steps. Such a method is also 

discussed in Mirchandani (1976) [42] where an arc with random arc costs is transformed 

to a set of parallel arcs, resulting in an "emergency equivalent" network. Each arc in 

the resulting network has a positive probability of failure such that the e.\pecled cost 

for the resulting network and the e.xpected cost of the original arc are the same. 

If the set of variables is defined for each arc { L j ]  €  S { i ) .  then the random 

variable 1/ can be written as 

= 

To compute the probability mass function for l'^-. all arc costs c^j. k = 1.2 A", j € 

S [ i )  are sorted and renamed as c'" where m = 1.2 RI\ such that 

< c~ < • • • < 
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Next. is defined as a bi-vaiued variable such that 

(-1.15) 
oc otherwise 

and denoted as Pr(f'"^ = c"') by where the 9"^ is obtained by Equation (4.12). 

Therefore. Equation (-4.14) becomes 

Once q^'s are determined and c"'"s are sorted, finding Pr(V',' = c"') for each c"' can 

be obtained in linear time. Thus, finding Pr(V/ = c'") for all possible r'" required 

0(RI\) steps. The bottleneck of this method is the sorting of all possible arc costs 

for the arcs going from node i. .A.n efficient sorting algorithm, such as the heap sort 

algorithm, requires only 0{ RK log( RI\')) steps. Thus, this method can compute \ 'j in 

0{ RK log( Rh')) steps. 

Methods to compute \ ' j  for a particular i  in Equation (4.2) is described. Since the 

n e t w o r k  i s  a c y c l i c  a n d  t o p o l o g i c a l l y  o r d e r e d .  1 ' ,  c a n  b e  c o m p u t e d  s t a r t i n g  f r o m  i  =  »  

to / = 1. Furthermore, once V'j is determined, its value will not change. Therefore, the 

recursion for computing Vy is a label-setting method. 

The procedure for DSSP algorithm is as follows: 

V; = min< i '  . L  (4.16) 

By using the arguments of deriving Equation (4.11). the result is 

Pr(v;- = c^) =  ( i  -  <7^)(1 - r ) . - - ( i  - (4.17) 

Procedure: DSSP-ALG 

1. Initialize 

V; = oc. i  =  I n  —  1 

V n  —  0  
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2. Let i  =  n  

Repeat 

i = 2 — 1 

For arc ( i . j )  € .4. define and compute Pr(fy^- = c^j) (i.e. qjj] 

by Equation (4.12) 

Sort ail c^j for j  €  S ( i ]  and define f by Equation (4.15) 

Compute Pr(\ / = for all n? using Equation (4.17) 

Compute V^-. 

until / = 1 

End Procedure 

Since there are n  nodes in the network, algorithm DSSP-.\LG needs 0 { i i  R K  \ o g {  R K ) )  

steps to compute I The speed of DSSP-.ALG depends on the values of R and A. The 

ne.Kt section discusses the performance of this algorithm using real data. 

4.3 Numerical Results 

In this section, numerical experiments that were performed to assess the effectiveness 

of applying the dynamic routing strategy to a real LTL network is e.xplained. Because 

of the availability of data, only the loading times (the time between a shipment being 

loaded onto a trailer until the trailer is closed) were considered to be random variables. 

The ranges of loading times were typically between one to 48 hours or between one to 24 

hours, depending on the type of terminal. The loading time was assumed to increase in 

two-hour intervals. For all other times, such as travel time on the road and waiting time 

for a closed trailer to be dispatched, the average times provided by the data set was used. 

The main objective was to compare the travel times for the priority shipments using the 

given load plan (LP) with the times using DSSP. When the routes provided by LP were 
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used, a shipment heading from the current terminal to a destination terminal can have 

at most two choices of the next stop (either primary or direct). On tiie other hand 

DSSP offers, some additional choices of next stops, that are selected on the basis of the 

smallest average travel times of the paths from the current terminal to the destination 

via these stops. The number of additional choices are 0-D pair dependent. Nevertheless, 

this number was less than three in most cases. 

In this experiment, two groups of domestic 0-D pairs were considered (International 

shipments are e.xcluded since they are handled differently). The first group consisted of 

150 0-D pairs that had the longest travel distance between the origin and the destination. 

In general, the shipments between these 0-D pairs pass through a lot of breaks. The 

second group consisted of another 150 0-D pairs that had a high percentage of total 

travel time spent on loading. Though the shipments pass through few breaks, the 

distance between the origin and the destination of each of these 0-D pairs was relatively 

small. 

The experiments were conducted using an SGI Indigo2 R4000 machine. Of the ;}00 

problems solved using DSSP. none required CPL' time of more than one second; hence, 

the algorithm is quite efficient. Table 4.1 shows the results for the average trawl lljnes(iM 

hours) of priority shipments for 10 typical 0-D pairs (five from each group). Column I 

gives the 0-D pair numbers. Columns 2 and 3 show the times for using LP and for using 

DSSP. respectively. Column 4 shows the time spent on the road by using LP. Column 5 

shows the time saved by using the dynamic routing strategy. Since the dynamic routing 

strategy can save time on loading but may increase the time spent on the road, the net 

time-savings has been expressed as a percentage of the average loading time for each 

0-D pair in column 6: these percentages are called effectiveness indexes since in general 

a higher percentage indicates that the proposed strategy is more effective. 

The average time spent on loading in group 1 is 50.5 hours whereas the average total 

travel time is 170 hours. The mean time savings is 7.5 hours with the standard deviation 
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Table 4.1 Comparison of solutions obtained by DSSP and by LP 

OD Pair LP DSSP Time on road Savings Effective Index 
1 173 162 116 11 19.3 
2 179 172 115 10.9 
3 15S 14S 109 10 20.4 
4 175 166 110 9 13.8 
5 172 163 109 9 14.3 
6 S9 79 21 10 14.7 
i  99 90 35 9 14.1 
S 81 69 14 12 17.9 
9 112 102 46 10 15.2 

10 110 99 39 11 15.5 j 

of mean of 1.5 hours. The mean effectiveness inde.x is 14 percent. Furthermore, one-third 

of the 0-D pairs in group 1 have a time-saving over 10 hours. For the second group, 

the average times spent on loading and the total travel times are 66.7 hours and 102 

hours, respectively. The average time savings is 6.7 hours so that the mean effectiveness 

index is just over 10 percent. For group 2. although the loading time can lie decreased, 

the travel distance can increase as well. Thus, the mean effectiveness index in group 

2 is lower. .N'otice that only the loading times are treated as random variables. If the 

probability distributions for other travel time components (such as the waiting lime 

for a trailer to be dispatched) are also available, then time-savings can be expected to 

increase. 

In practice, using the dynamic routing strategy for shipments in every 0-D pair is 

unlikely, partly because of the terminal layout at breaks. Therefore, the dynamic routing 

strategy should be used as an exception rather than as a rule. The numerical experiment 

suggests that this strategy is more effective for 0-D pairs that are far apart than for 

those that are close to each other. 
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5 DYNAMIC SERVICE NETWORK DESIGN(DSND) 

5.1 Introduction 

The main objective of this research is to minimize cost over time by deciding when to 

dispatch a trailer for LTL motor carriers. .As a first step in deciding when to dispatch a 
*N 

trailer this research concentrates on dispatch of trailers over a single link. The dispatch 

of a trailer over a single link can be solved optimally. The purpose of this research is 

not to find an optimal solution to dispatch a trailer over a single link, but to estimate a 

recourse function that can then be used to solve vehicle dispatching problems on large-

networks. This research attempts to address the problem of when to dispatch a truck 

dynamically (based on the current time and the shipment level at the current time), 

trading off the costs of holding shipments vs. the cost of sending a trailer. 

The primary motivation for this research is the fact that LTL carriers u.se ad hoc 

stationary dispatch rules based on e.xperience to decide when to dispatch a trailer. How

ever. LTL carrier experience hour of day. day of the week and seasonal variations in the 

arrival rate of the shipments, so the solution should take into account this dynamism 

of the shipment arrival rate in deciding when to dispatch a trailer. .A, dynamic dispatch 

strategy to the DSN'D problem is important because it can reduce fi.xed and penalty 

costs incurred by LTL carriers and can increase service level provided by LTL carriers 

to customers. 

The following simplifying assumptions are made in this research: 

• Trailers are dispatched over a single link 
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• Shipments arrival rate at a terminal is either static or dynamic 

• Fixed costs are associated with dispatching a trailer 

• Shipment holding costs are associated with each unit of time that a shipment is 

held 

• When a trailer is dispatched at time t .  the following is assumed: l[ + a i  < /v 

• Trailers can be dispatched at any time of the day 

The main contribution of this research is that for a single link problem, a recourse 

function which gives the future cost of having If shipments at current time f is developed 

and provides an approach to estimate the shape of this recourse function. The dynamic 

control policy described in this research exploits the linearity of the recourse function 

estimated, in solving the trailer dispatching problem efficiently. The dynamic control 

policy also takes into consideration real-time information(current time of the day and 

current shipment level) in deciding whether to close a trailer or not. Instead of ad hoc 

rules for closing a trailer, this research provides an analytical way for LTL carriers decide 

when to close a trailer. .N'umerical experiments with the dynamic control policy show 

that the solution obtained is close to the optimal solution. Since the recourse function 

can be estimated easily and is computationally fast, the method can be used to solve 

subproblems in large LTL networks. 

The remainder of this chapter is organized as follows. First, a stationary infinite 

horizon problem is described. The infinite horizon problem supports that a linear ap

proximation to the recourse function is a good approximation. Second, a finite horizon 

problem is described and shows how to optimally solve a deterministic dynamic prob

lem. Finite horizon problem is primarily used to test different truncation strategies. 

Finally, this chapter describes a dynamic control policy for solving vehicle dispatching 
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problems over a single link. The dynamic control policy described is approximate, and 

the demonstration of its value is experimental. 

5.2 Terms 

Some of terms used in this chapter are described below: 

• Fi.xed costs: Fixed costs are those costs incurred in closing a trailer such as driver 

cost, fuel cost, equipment cost. 

• Variable/holding costs: Variable costs include holding costs incurred in each de

layed shipment and cost of lost revenue due to loss of customer goodwill. 

• Stationary dispatch rule: .A. trailer is dispatched when a minimum capacity of the 

trailer is filled(such as 90 percent). The dispatch strategy does not depend on the 

time of day. or the day of the week and hence is called the static dispatch strategy. 

• Dynamic dispatch rule: The decision to dispatch a trailer depends not only on the 

current shipment level, but also varies with the time of day. and day of the week 

and hence is called the dynamic dispatch strategy. 

5.3 Problem Definition 

The dynamic service network design problem addresses the problem of when to close 

a trailer based on information available at the current time. Currently. LTL carriers use 

the following strategies to decide whether to close a trailer or not. LTL carriers close the 

trailers if a certain minimum such as 90 percent of the trailer is filled. TTMS of several 

shipments such as L5 percent has expired, or the trailer is held open for a long period 

of time such as 24 hours at a dock door. 
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The dynamic dispatch strategy is to dispatch a truck based on a function /?/ that 

varies with time. The time dependent function should consider what is likely to happen 

in the future, such as time of day. day of the week, holidays, and seasonal effects. In 

t h i s  r e s e a r c h ,  a n  a p p r o x i m a t e  a l g o r i t h m  i s  p r o p o s e d  w h i c h  c a n  b e  u s e d  t o  c a l c u l a t e  h f .  

which determines when to close a trailer. 

5.4 Mathematical Model (Single Link Problem) 

The dynamic dispatch strategy- can be mathematically defined as follows. 

Let. 

y t  =  

and let the closing strategy be. 

I if closing a trailer 

0 otherwise 
(o .  1  

I if // + a/ > threshold 

0 otherwise 
(0.2) 

where. 

x  static 
threshold — ^ (5.."3) 

h f { l f )  dynamic 

The aim of the dynamic service network design problem is to find y  that minimizes 

the total cost of operations which can be mathematically written as. 

T - l  
min 

/=0  

The optimality equations for this problem are given by. 

Rtilt) = min Fyt+hUf + ai - A'y;)+ + ((/^ + a; - Kyt)'^) (o.o) 
y t e i O . l )  



www.manaraa.com

64 

where 0 < q < 1 

5.5 Solution Approach 

The section presents dynamic control policy as a solution approach to the DSXD 

problem. The solution procedure is based on a successive linear approximation of the 

value function Rf(If). Such a solution procedure for the finite horizon problem is quite 

sensitive to truncation effects, and so a reasonable approximation to the terminal reward 

function is needed. Next, an approach to develop an approximation for the 

terminal reward function using a stationary infinite horizon model is proposed. .Also, 

the infinite horizon model supports the theory that the linear approximation to the 

recourse function is a valid approximation. 

5.5.1 Infinite horizon problem 

The infinite horizon problem is used as an approximation to the terminal reward in 

a finite horizon model. To develop a tractable model, the arrival rate Uf is assumed to 

be a constant a. 

In the limit, the optimaility equations given in Equation 5.5 can be rewritten as 

follows for a stationary, infinite horizon, discounted problem. 

/?(/)= min F y  +  h ( I  +  a  —  K y ) ' ^  +  a R ( { I  +  a  —  (5.6) 
.i/€(0.1) 

Let y * i l )  be the optimal solution to above equation. Under certain conditions. 

Papastavrou et. al. [45] show that the optimal decision rule is the threshold rule to the 

above problem: 

y * { I . x )  =  <  
1 if / > X 

(5.1 
0 otherwise 
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Therefore a closed form of Equation 5.6 can be obtained by substituting the above 

function. 

R i l . x )  =  F y * ( L x )  -i- h [ I  + a - K y*(I . x ) ) ' ^  +  Q R { { I  +  a  —  [ \  y * ( I .  x ) ) ' ^ )  (o.S) 

Let the threshold value x  be < A'. Let. the time be scaled so that a = I. Since the 

time is scaled, the discount factor q is replaced by Qa= and the holding cost h is 

replaced by ha = h/a. 

5.5.1.1 Solution Approach 

The steady state value function R { I . x )  given in Equation 5.6 can be estimated by 

solving a system of linear equations that relate R( l.x) at time t to /?(I.x) at time / -f- I. 

This yields the following set of equations: 

R { 0 . x )  = l/jfl + Qfl/?(1. J*) (5.9) 

/?(l.j-) = 2lia + Qa R{'2. x] (5.10) 

(5.11) 

(5.12) 

(5.i;}) 

R ( x  -  l . x )  =  x h a  - r  a a R i x . x )  (5.1-1) 

R ( x . x )  = F  +  a a R i O . x )  (5.15) 

Substituting Equation 5.9 into Equation 5.15 gives: 

R { x . x )  =  F  +  a a h a  + Qa"/?(1. x) (5.16) 

Repeating the process gives: 

X  
R [ x . x )  =  F  +  h a  ^(a-. J) (5.17) 

/=i 
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Solving for G(x.x) then gives: 

.r 
= (1/1 — )[F +/la ^ iOf/'j 

/ = l 
(o.lS) 

Then R ( x  —  l . x ) ,  R { x  —  2 . x )  /?(1. j*)./?(0. x) can be computed using Equations 

•5.9 to 0.15 recursively. This gives the function R { I . x )  for / = 0.1 r — l..r a.^ a 

function of x .  

1200 

1000 -

800 -

^ 600 -

4 0 0  -

200 H 

- Q — F =  5 0  

F =  2 5 0  

F =  5 0 0  

100 

Figure -5.1 /?*(/) vs. / for h  = 0.-5.q = 0.96 and different values of F  

The shape of R * { [ )  is illustrated for different values of F  in Figure 5.1. Three 

different values of F namely 50. 250. 500 are used with h = 0.5 and o = 0.96 and the 

resulting function R*(I) is plotted. The shape is roughly linear, suggesting a linear 

approximation is a good approximation for the recourse function. The shape of /?*(/) 

is illustrated for different values of h in Figure 5.2. Three different values of h namely 
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800 

600 -

^400 -

200 

h=: 0.1 

h= 0.5 

-^^h= 1.0 

100 

Figure 5.2 R * { I )  vs. / for F  =  -50. o = 0.96 and different values of h  

O.I. 0.5. and I.O are used with F  = 50 and o = 0.96 and the resulting function /?*(/) 

is plotted. The shape is roughly linear, suggesting a linear approximation is a good 

approximation for the recourse function. The shape of /?*(/) is illustrated for different 

values of a in Figure 5.3. Three different values of o namely 0.5. 0.75. and 0.96 are 

used with F = 50 and /? = 0.5 and the resulting function /?*(/) is plotted. The shape 

is roughly linear suggesting a linear approximation is a good approximation for the 

recourse function. 

The infinite horizon problem described here assumes a stationary demand pattern, 

infinite horizon, and steady state. The infinite horizon problem can be solved easily 

if a stationary demand pattern is assumed. The infinite horizon problem gives good 

results for a stationary demand pattern. But. LTL carriers are characterized by strong 
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500 

400 -

300 -

DC 200 -

100 -

alpha= 0.5 

alpha= 0.75 

tr— alpha= 0.96 

100 

Figure o.3 /?*(/) vs. I for F = 50./? = 0.5 and different values of q 

hour of day. day of week, and seaisonal patterns that can significantly affect the optimal 

dispatch policy. Therefore, any solution strategy for LTL carriers should be able to 

handle dynamic demand patterns. 

5.5.2 Finite horizon problem 

This section describes a finite horizon problem. The finite horizon problem vva.s used 

to test different truncation strategies for use in the dynamic control policy described 

in the next section. Numerical e.xperiments were done to compare the optimal solution 

with the finite horizon approximation in order to determine the best truncation strategy 

for the dynamic control policy. Infinite horizon approximation discussed in the previous 

section was used as one of the truncation strategies for the finite horizon approximation. 
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The finite horizon problem can be formulated as follows: 

R f i l t )  =  n u n  r t ( y f .  I f ) (o.l9| 
y/€{0.1} 

= min {Fyt + hilf + at - Kyt)'^ + aRf^iiilf + Of - [\yf )'^)(^o:20) 
y^€{0.i} 

for t= 0.1 T-l. Given Rj'(lj') as a terminal reward function, the finite horizon 

problem formulated above can be solved by dynamic programming using a backward 

recursion algorithm. 

There are several choices for the terminal reward function R-p(lY)- The four al

ternative terminal reward functions given below are compared for the best choice as a 

boundary function. The first truncation approximation function(o.21) assumes that at 

time T. the cost of all current and future shipments is 0. The second approximatioti 

function(o.22) assumes that at time T. the cost of all current and future shipmetits 

is equal to the optimal solution of a stationary problem. The third approximation 

function(.5.23) replaces the exact infinte horizon function with the linear approxima

tion of the function. The fourth approximation function(o.24) assumes the terminal 

reward function to be the cost of holding If shipments, assuming the trucks are always 

dispatched full. 

R f i f f ]  = 0 (0.21 

R f ( I j )  = R j i l f )  (0.2-^ 

II 

1—
'*

 

(0.2;} 

R f { I j )  = F j K I f  (5.24 

(o.2o 

5.5.2.1 Numerical Work 

Numerical experiments that were done to choose the best truncation strategy and 

the horizon to use in the dynamic control policy are explained in this section. First, the 
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length of the planning horizon was assumed to be 20. and the recourse function given 

in Equation 5.20 is plotted using the four truncation strategies given in Equations 5.21. 

5.22. 5.23. 5.24 in Figures 5.4. 5.5. 5.6. 5.7. respectively. The recourse function was 

plotted as a .3-D graph against length of the planning horizon and the current inventory 

level(s). long planning horizon (500 time periods) was chosen and the problem is 

solved using dynamic programming recursion and the resulting graph was plotted in 

Figure 5.S. 

Second, relative error in slope for each of the truncation appro.ximations. when com

pared to the recourse function computed using a long planning horizon (500 time peri

ods). was plotted as a function of the planning horizon in Figure 5.9. .As can be seen 

in Figure 5.9. the truncation approximations /?*(/..r) and 7-q both have relative 

errors close to 0 when the length of planning horizon used was greater than 60. For 

truncation approximations 0 and F/K * /^. the relative error in slope did not reach 

close to 0 even if a planning horizon length of 100 was used. This suggested that using 

a stationary infinite horizon solution or a linear approximation of it as the truncation 

strategy for the finite horizon problem terminal costs was a good api)roximation when 

using planning horizon lengths of greater than 60. .Absolute actual errors for each of the 

truncation approximations, when compared to the recourse function computed using a 

long planning horizon was plotted as a function of the planning horizon in Figure 5.10. 

.As can be seen from Figure 5.10. the truncation appro.ximations /?*(/..r) and rg -j- rj If 

both have actual absolute errors close to 0 when the length of the planning horizon was 

greater than 60. For truncation approximations 0 and F/f\ * If. the relative error in 

slope did not reach close to 0 even if a planning horizon length of 100 was used. This 

suggested that using a stationary infinite horizon solution or a linear approximation of 

it as the truncation strategy for the finite horizon problem terminal costs was a good 

approximation when using planning horizon lengths of greater than 60. 

In Figure 5.11. /?(/..t) is illustrated using different demand rates, at time period 
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t  =  0. and for different current inventory levels. As can be seen from Figure 5.11. tlu> 

.shape of the function is fairly independent of demand patterns for reasonable values of 

the parameters. The shape of the recourse functions is roughly linear suggesting that a 

linear appro.ximation for dynamic control policy is a good approximation. 

( sing the given solution approach for the finite horizon problem, the quality of 

solution obtained is high as 7" —> oc. The finite horizon problem can be easily solved 

for a general time dependent arrival vector af. However, the states are shipment level 

dependent with large state space and the solution approach can only handle deterministic 

data. It is difficult to embed the solution procedure for a single link into large LTL 

networks. .A practical solution approach should be able to handle a general arrival vector 

Uf. which should be computationally fast and should be able to easily embed the solution 

approach for a single link problem into large LTL networks. Such an approximate 
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solution approach which can handle dynamic demand patterns and is computationally 

fast is described in the next section. 

5.5.3 Dynamic Control Policy 

LTL carriers are characterized by strong hour of day. day of week, and setusonal 

patterns hence, a dynamic control policy that varies over time will outperform simple 

static rules. .A. simple dynamic dispatch strategy can be derived by replacing + i + i) 

in the equation given below: 

= ^yih) + ) (5.26) 
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with a linear approximation (Equation 5.27) 

and the resulting equation 5.28 is solved. 

ijf = arg min +/j(/^ + )++ Q(rO^ + //+ O; - )+) (5.28) 
!//€(0.1) 

Ut — ^ then, from the above equation the following can be inferi'ed. 

F  +  h { I f ^  +  — A ) + < y {rQf + r ^fiI f  + a f  — < (5.29) 

h(I( + Uf) + a{rQ^ + + "<) (5.;}0) 

Since If +ai is assumed to be < A' when yf = I. the above equation can be rewritten 
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as: 

F  < {h + a r n ) [ I i -{• a f \  (o.."n) 

Therefore, an approximate dispatch rule is that a truck should be dispatched when

ever the above condition is satisfied, which can be written mathematicallv as follows; 

y t i h ) ^  
1 if {Ii + ai) > Fl(haril 

0 otherwise 

In order to use the above dispatch strategy linear approximation and r^f of the 

f u n c t i o n  i s  n e e d e d .  T o  e s t i m a t e  t h e  l i n e a r  a p p r o x i m a t i o n  o f  t h e  f u n c t i o n  R f  \  I f ) .  

the function Rfdt) is approximated by the function Rfilt) given below: 

R t ( I t )  =  F y ( I t )  +  h ( I f  - X * « / ( / ; ) ) +  + a ( r o _ f + i  +  

Let All ^ small increment of I f .  Given change in the state variable A//, the 

change in the decision variable A.y{Ii) can be written as follows; 

• ^ y i h )  =  y i h  +  

I if Ii < .i'l and // + A// > .r/ 

0 otherwise 

If A// = 1. then the slope of function Rfili) (given in Equation o.-'}-'}) at iteration A-. 

for a given state can be estimated as follows: 

(r).;j6) 

(o.;}7) 

(o.;}8) 

=  F \ y { [ f )  +  h ( l  - X f A y i l i ) )  +  A / ; ^ ^  

F  —  h x ^  — af^ otherwise 

.\lso. in Equation 5.32. a truck is dispatched if is > F/(/i -t-ar^^). Therefore 

F j i h  +Qrj^) is the threshold value Xf at which to dispatch a truck at time t .  The linear 
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approximation is used in the approximate dispatch rule (given in Equation o.32l to 

determine when to dispatch the trailer. Linear approximation f^f of the function /?/(//) 

can be iteratively estimated and updated as follows. 

1. Iq = O.ffj. = = F/(/2 + Qrf^). 

2. For each iteration h = [ I\ 

3. For time period / = 0.1 T  using linear appro.ximation and the dispatch rule 

in Equation -5.32. an initial state I Q and arrival process A F .  the state variable I F  at 

time t can be simulated in a forward pass, using the following transfer function: 

^t+l ~ (~ (•")..39) 

4. if (k=0) update If- = /^' 

o. L'pdate (1 - '•,)[^' + 

6. For time period t  =  T . T  —  1 0 

.. Estimate the slope ^ at time / given threshold value and state variable ij' 

as follows: 

, U+af{-, , if/f + A;<i| 

' • ' " I  / •  I- i- ' F  —  h x ^  ~ otherwise 

8. Update = (1 - + jr^i 

9. L pdate the threshold value with new using Equation -5.32 

10. Update = (1 - l)x^ + 7.r^' 

11. If f > 0 go to Step 6 
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12. If k < I\ go to Step 2 

The algorithm may not converge, so 7^. =  l / k  step size sequence is used, which sat-
oc oc ^ 

isfies the standard conditions ^ 7^ = oc and ^ (7X-)~ < oc as the smoothing factor 
k=l k=l 

for convergence. 7 is initialized with a value 0.5. and then it is factored down ever\- A 

iterations if no improvement in the objective function is found. 

The advantage of this approach in estimating the linear approximation for dynamic 

control policy is its simplicity. This approach uses linear approximation at time / -i- 1 

to assist in making a decision at time t. Also, this approach is robust to variable data. 

Future research of this approach can be extended to handle the interaction between 

closing at different terminals. Numerical experiments were done using the dynamic 

control policy, and the total cost of operation in a planning horizon was compared 

against the static dispatch strategy and optimal solution. The results are described in 

the next section. 

5.6 Numerical Experiments 

-Numerical experiments were done to evaluate the dynamic control policy when com

pared to static dispatch strategy and the optimal solution. Stationary, dynamic, and 

optimal solutions are compared in Figures o.l2. .5.1:}. o.U. and o.lo. .A.s can l)e seen 

from Figures o.l2. 5.13. 5.14. and 5.15. the dynamic control policy, which uses 100 it

erations in estimating the linear approximation is better than the stationary dispatch 

strategy and is close to the optimal solution. Dynamic control policy has run times that 

are approximately linear as can be seen in Figure 5.16 and hence the solution procedure 

for the single link problem can be easily embedded in a large LTL networks. 

Dynamic control policy develops a linear approximation for the recourse function and 

the developed linear approximation is then used to decide when to dispatch the trucks 

dynamically. The advantage of this approach is that numerical experiments show that 
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the solution obtained is close to the optimal solution and quality of the solution is much 

better when compared to a static dispatch strategy. The linear approximation developed 

is shown to be fast when compared to dynamic programming, so the techuiciue can be 

used to solve subproblems in a large LTL network. 



www.manaraa.com

83 

2900 -

2800 -
0) 

82700 H 

O2600 H 

2500 H 

DCP 

Static 

Opt. 

100 

Number of iterations 
200 

Figure 5.13 Comparison of dynamic, stationar}-. and optimal solutions for 
F = 75. /? = 1. o = 0.96 



www.manaraa.com

84 

DCP 

Static 

Opt. 

100 

Number of iterations 
200 

Figure 0.14 Comparison of dynamic, stationary, and optimal solutions for 
F = 100. /; = 1. Q = 0.96 



www.manaraa.com

So 

10000 

9000 -

^ 8000 
o 
o 

« 7000 
o 
H 

6000 -

5000 

DCP 

Static 

Opt. 

100 

Number of iterations 
200 

Figure o.lo Comparison of dynamic, stationary, and optimal solutions for 
F = 500. h = 0.5. Q = 0.96 



www.manaraa.com

86 

100 

C=500 

C=100 

C=75 

C=50 

100 

Number of iterations 
200 

Figure 0.16 Solution times for dynamic dispatch strategy at different values 
of F. h. o 



www.manaraa.com

87 

6 CONCLUSION 

The research investigated the impact of opportunisitic direct service, direct service, 

holding time. TTMS. and closing capacity on total cost of the system and on the num

ber of bills delayed. The simulation model pointed out that decreasing the minimum 

capacity that needs to be filled for dispatch or decreasing the holding time at a terminal 

did not necessarily decrease the number of delayed shipments. The number of delayed 

shipments was only affected by TTMS. The experiments also showed that adding op

portunistic direct service to regular service reduced the number of bills delayed. The 

simulation model was also able to identify the most congested/underutilized breaks so 

that EOLs could be reassigned. These experiments in changing policies/loadplans to 

reduce congestion or to increase utilization are costly to implement in the actual oper

ations of an LTL carrier without knowing their total impart on the rosT/<ervire of the 

whole system. The simulation model developed could also be used by LTL managers for 

planning day-to-day operations in estimating the number of empty trailers that had to 

be moved to a terminal and number of drivers that had to be sent to a terminal to meet 

the demand. 

.\lthough. abundant literature is available in railroad and shipping operations simu

lation. none has been found in LTL operation simulation. It is therefore assumed that, 

the simulation model will serve as a valuable tool for large LTL carriers to improve 

the level of service provided to the customers and to reduce the cost. The simulation 

model will be more acceptable by LTL managers as they can manipulate and conduct 

sensitivity analysis on it easily when compared to complicated analytical formulation 
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that they caanot work with on a regular basis. This research has demonstrated the 

use of simulation in a real world application. The simulation model and the approach 

described in this research are considered to be very useful to the LTL company analy sts 

to explore many other operating options in the future. 

.•\n alternative shipment routing strategy is considered for the priority shipments 

on an LTL line-haul network. By using a network formulation, this strategy can be 

represented by finding a dynamic shortest path over a stochastic network. .-\ label-

setting algorithm was developed to find the expected travel time from each node to the 

destination when using this strategy. The algorithm was found to be quite efficient to be 

used in real time. Numerical experiments indicated that this adaptive routing strategy 

allowed the priority shipments to reach their destination at a fast rate. Therefore, 

considering the stochastic and dynamic aspects in LTL routing is worthwhile. 

While the results are encouraging, several issues remain to be addressed. First, the 

assumption that perfect information about a terminal is given when the terminal i.>^ 

reached may not be valid. In practice, only partial information can be obtained. In fact, 

transforming real-time information to a form that can be used mathematically requires 

further investigation. .Second, in the experiments, the waiting time for a closed trailer 

to be dispatched at a terminal was not considered a random variable. The waiting time 

depends on the availability of drivers who can handle this trailer. However, dealing 

with this issue is not trivial. For example, even when a driver is available to handle 

a closed trailer, he can take a "future" trailer on which many shipments have mi.ssed 

the deadline. Third, since priority shipments constitute only relatively small portion of 

the total shipments, the total cost increase due to the violation of using the load plan is 

small. If the same dynamic routing strategy is applied to regular shipments, it is unclear 

at this stage whether the total cost would increase substantially or not. 

.A dynamic control policy was developed for dispatching trailers on a single link. .A 

recourse function was developed which estimates the total future cost from current time 
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/ given state Sf at current time. The dynamic control policy exploited the linearity 

of the recourse function in solving the trailer dispatching problem efficiently. Though 

an infinite horizon with stationary arrivals and a finite horizon with dynamic arrivals 

could be solved easily, most of the real world problems occur in an infinite horizon and 

dynamic setting. Therefore, the solution obtained for infinite horizon and finite horizon 

models will be appro.ximate for real world problems. This research finds an approximate 

solution for infinite horizon and dynamic setting and shows that the quality of solution 

obtained is close to the optimal. Numerical experiments show that the dynamic control 

policy reduced the cost when compared to the static dispatch strategy. Therefore, this 

research shows that considering dynamic control policy for dispatching trucks in LTL 

networks is worthwhile. Since, the algorithm is simple and fast and hence, could l)f' 

extended easily to large LTL networks. 

Several of the following issues remains to be addressed in the future. First, though 

the numerical results showed that the dynamic control policy was effective, it was not 

proved to be optimal. Second, this research assumed the demand to be deterministic. 

Therefore, further research is recommended to extend the dynamic control policy to 

the dispatch problem with stochastic demands. Third, tliis research mainly considered 

vehicle dispatching problem over a single link. However, application and effectiveness 

of this strategy on a large LTL network needs to be tested. Fourth, in this research 

regardless of the time the shipment is delayed, the penalty cost is assumed to be the 

same during each period. Future research needs to consider non-linear penalty costs with 

increasing waiting time. However, dealing with non-linear penalty costs is not trivial. 
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